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ABSTRACT 

Achieving Connected k-Coverage in Wireless Sensor Networks using Computational Geometry-

based Approaches  

May 2023 

Venkata Swamy Kalyan Nakka, Bachelor of Technology  

IIT (ISM) – Dhanbad 

Chair of Advisory Committee: Dr. Habib M. Ammari 

 

 The metrics, called coverage and connectivity, are often used to assess the sensor's 

sensing and communication capabilities in planar wireless sensor networks (PWSNs). A PWSN 

relies on the detection capabilities of the sensors to provide coverage. However, this is not 

sufficient for this type of network to function properly. In addition, having all the sensors 

connected, i.e., they are capable of interacting with each other, is essential for the proper 

operation of PWSNs. This research aims to solve the connected k-coverage problem in PWSNs 

by ensuring that all field locations are covered or within the sensing range of at least k sensors (k 

> 1). Here, we provide a solution to the connected k-coverage problem using computational 

geometry-based approaches. Our goal is to maximize the lifetime of PWSNs by achieving 

connected k-coverage with a minimum number of sensors. To begin, we propose to tile the 

whole field of interest with planar tiles, which are convex polygons that do not overlap with each 

other and do not leave any gap in the underlying field. Following this, we compute the planar 

sensor density that is required to achieve k-coverage of a planar field of interest using these 

convex polygonal tiles. In addition, we determine network connectivity by correlating the 

sensing range of sensors with their communication range. Moreover, we propose energy-efficient 
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connected k-coverage protocols based on our planar convex polygonal tiles. Finally, we validate 

our conceptual analysis with facts from simulations.  
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NOMENCLATURE 
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PR-Het-DCCk Pseudo-Random Heterogeneous Distributed Connected k-coverage 
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DCRT-PCAk Dynamic Centralized Reuleaux Triangle-Based Partition Coverage 

Algorithm 

DIRT-PCAk Distributed Reuleaux Triangle-Based Partition Coverage Algorithm 

DVOC Distributed Voronoi based Cooperation scheme 

ISCPk Improved Stochastic k-Coverage-Preserving Sensor Scheduling algorithm 

IRKCk Irregular Hexagon-based k-coverage protocol 

DIRACCk Distributed Randomized k-coverage protocol 

k-CSqu k-coverage using Cusp Squares 

k-InDi k-coverage using Inner Diamonds protocol 

LOFO Loss of Overlap 
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CHAPTER 1.   INTRODUCTION 

  

Wirelessly linked networks of sensors that are planarly spread in any field, with the sole 

purpose of collecting data about the field's environment and sending it to a centralized location 

(the "sink"), make up what are known as planar wireless sensor networks (PWSNs). Humidity, 

temperature, light, sound, vibrations, pollutants, pressure, and so on, are only some of the factors 

that may be measured using these sensors. Because of their defining characteristic—their 

capacity to sense—all sensors are capable of monitoring these external factors. Once they have 

collected the data, the sensors send it to their neighbors, and so on, until it reaches the sink, 

where all the information about everything in the environment is stored. The whole field has to 

be well covered by PWSNs, and all sensors need to be connected to each other so that the 

collected data can be sent successfully to the sink. 

1.1   Motivations of the Work 

As we have already established, robust PWSN coverage necessitates dependable and fault-

tolerant data collection from all sensors and dependable, loss-free data transfer to the sink. Thus, 

it is essential that the sensors be placed so as to eliminate dead spots in the network and provide 

complete coverage. When every point in a field of interest is covered by at least k sensors 

simultaneously, wherein k > 1, we say that we have k-coverage. When all sensors in a field that 

are involved in a k-coverage process are mutually connected, we say that the underlying PWSN 

ensures connected k-coverage. 

1.2   Research Objectives and Goals 

Our primary objective is to achieve connected k-coverage in PWSNs. As such, we need to set up 

the sensors in a field of interest in a manner that allows us to achieve the following goals: 
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− Full k-coverage of said field of interest. 

− Connectivity among all the sensors participating in the k-coverage process. 

1.3   Outline of Thesis 

In this thesis, we provide novel approaches based on computational geometry to 

guarantee k-coverage of a planar field of interest and connectivity among all the actively 

involved sensors. This thesis is organized as follows: In Chapter 2, we introduce the basic ideas, 

terms, and models, including network model and energy model, which will be used in our study 

of the connected k-coverage problem in PWSNs. In Chapter 3, we discuss how others have 

employed computational geometry techniques to address the problem of connected k-coverage. 

In Chapter 4, we investigate various two-dimensional convex polygonal shapes for determining 

the best planar tile that can be used for a planar tessellation. Determining the best tile is achieved 

using our metric Loss of Overlap (LOFO). In Chapter 5, we establish the theory for connected k-

coverage using square tessellation and introduce our k-coverage protocol using Cusp Squares (k-

CSqu). In Chapter 6, we establish the theory for connected k-coverage using hexagonal 

tessellation, and present our k-coverage protocol using Inner Diamonds (k-InDi). In Chapter 7, 

we discuss the simulation results for evaluating our connected k-coverage protocols k-CSqu and 

k-InDi, and compare these results with those of our theoretical analysis. Moreover, we evaluate 

the efficiency of our k-CSqu and k-InDi protocols in comparison to that of an established 

connected k-coverage approach DIRACCk [14]. In Chapter 8, we conclude and discuss all 

possible future directions and extensions of the proposed protocols. 
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CHAPTER 2.   PRELIMINARIES 

 

 To address the challenge to build connected k-coverage configurations in PWSNs, we 

employ terminology and models particular to the domain, such as the sensing model and energy 

model, to provide methods and protocols. Chapter 1 provides a brief overview of the connected 

k-coverage issue in PWSNs and demonstrates how our solutions take into consideration the 

unique characteristics of each network. Following that, we offer definitions for numerous 

essential terminology and some context for the various models that we'll employ all through the 

rest of this thesis. 

2.1   Terminology 

 In this part of the thesis, we define certain essential terms and offer some background 

information on some significant ideas. 

 A sensor's sensing range is the region across which it is capable of picking up 100% of 

events. 

 A sensor's communication range is the region in which it is able to exchange data with 

any other sensors. 

 If all the sensors that make up a PWSN have the same power source, sensing and 

transmission capabilities, storage space, and processing power, we say that the network is 

homogenous. If this isn't the case, we say that the WSN is heterogeneous. Our research into 

sensor heterogeneity centers on the first three characteristics listed: energy capacity, sensing 

range, and communication range. 



 
 

4 

 
 

 We say that an area A is k-covered when every point in it can be viewed by minimum k 

sensors at once. In this context, "k-coverage" refers to the level of network coverage assurance 

provided by the PWSN that monitors on that particular region. 

A PWSN is said to have connected k-coverage of a region it is paying attention on when 

all of its sensors are networked together in such a way that there is at least one means for each 

pair of sensors to interact with one another. 

 The planar sensor density is the number of sensors per unit area. 

 Tile is a self-replicating, self-adjoining pattern of convex regular polygons that 

completely covers an area without leaving any gaps or overlaps. 

2.2   Sensing Model 

 In our deterministic sensing model, sometimes called a binary sensing model, every point 

P in the field may be sensed by a sensor s if and only if the Euclidean distance δ(P, s) is lower 

than or same as sensing range. The point P sensed by sensor s is denoted by the expression 

Cov(P, s) in this context. 

 Cov(P, s) = {
1, 𝑖𝑓  𝛿(P, s) ≤  𝑟𝑠

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

 

2.3   Energy Model 

 It's widely known that sensors drain their power supplies for tasks like sending and 

receiving data, detecting, moving about, and so on. Active sensors also have an energy footprint 

even when they are not doing any of the aforementioned tasks. As published in Heinzelman et al. 

[1], the energy model is specified as, and may be used to calculate the energy required for data 

transmission and reception: 
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 𝐸𝑡(𝑑) = 𝑏 × (𝜀𝑑𝛼 + 𝐸𝑒)   

 𝐸𝑟 = 𝑏 × 𝐸𝑒   

where, The amount of energy required for a sensor to communicate a message of size b bits over 

a certain distance d is indicated by Et(d), while the sensor's energy expenditure in deciphering 

that message is represented by Er(b). Ee is the electronic energy, and ε is either free-space (εfs) or 

multi-path (εmp) model and 𝛼 ∈ [2, 4] is the path-loss exponent. 

2.4   Network Model 

For the sake of this investigation into the connected k-coverage problem, we assume that all 

sensors in a PWSN are similar and remain in the same locations. That is to say, the detecting and 

communicating capabilities of each sensor are equivalent. Moreover, in two-dimensional 

PWSNs, they are simulated as disk-shaped with radii of rs and rc, respectively, and centers that 

relate to the locations of the respective sensors; additionally, each sensor will have a distinct id, 

as well as All sensor's location is known owing to Location services or another location-finding 

method [2]. 
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CHAPTER 3.   RELATED WORK 

 

 There has been a lot of research done on the question of how to achieve connected k-

coverage in PWSNs [3–13], with several authors contributing solutions that rely on exploiting 

fundamental computational geometrical characteristics while placing sensors. For the purpose of 

maintaining connected k-coverage in various configurations of PWSNs, researchers investigated 

and used numerous geometrical properties of regular and irregular polygons, such as the triangle, 

pentagon, and hexagon.  

To ensure connected k-coverage in homogeneous PWSNs, Ammari et al. [14] 

investigated the Reuleaux triangle and its properties, and as a result, they proposed several 

protocols CERACCk, T-CRACCk, and D-CRACCk. To maintain connected k-coverage in 

heterogeneous PWSNs, Ammari [15] later introduced protocols, PR-Het-CCCk and PR-Het-

DCCk. Applying the idea and properties of the Reuleaux triangle discussed by Ammari [14], Yu 

et al. [16] proposed SCRT-PCAk, DCRT-PCAk, and DIRT-PCAk protocols. The Delaunay 

triangle was utilized by Qiu et al. [17] to reduce the number of possible situations that result in 

gaps in coverage. To maintain k-coverage while allowing the sensors to move to fill the coverage 

gaps, they used k-order Voronoi diagrams and created DVOC. 

In order to guarantee stochastic k-coverage in homogeneous PWSNs, Yu et al. [18] 

presented the ISCPk method, which uses regular pentagons to partition the sensing range of each 

sensor. The connected k-coverage issue in PWSNs was solved by Ammari [19, 20] using regular 

hexagons and their attributes. To k-cover a field, he introduced the protocol IRKCk [19], which 

included creating an irregular hexagon out of regular hexagons. Furthermore, Ammari [20] 
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suggested, namely Cone-based k-coverage and Perimeter-based k-coverage protocols, that make 

use of concentric regular hexagons and area stretching. 

Motivated by this body of research, we want to make better protocol contributions to the 

field of computational geometry-based sensor deployment in PWSNs with the goal of achieving 

connected k-coverage. We will examine many widely-used regular two-dimensional shapes in 

order to determine the best regular convex polygon for representing the sensor's sensing range 

and enhancing its area while overlaying a two-dimensional field. Our goal is to find the optimal 

regular two-dimensional convex polygons for tiling a two-dimensional plane. 

 To achieve k-coverage, we will tessellate a two-dimensional field using the ideal convex 

polygon we discover, and then investigate optimal sensor placement inside each tile. The optimal 

planar sensor density for achieving k-coverage in a two-dimensional field will also be calculated. 

We will utilize this method to find a better balance between the sensing range and the 

communication range of the sensors in order to guarantee connectivity among all of them and 

provide connected k-coverage of such field. 

 We will next implement all of these methods and create procedures for selecting the 

minimal number of sensors required to maintain continuous k-coverage in a two-dimensional 

region. We'll also evaluate the merits of the protocols we suggest against one another in an effort 

to zero in on the most advantageous option. 
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CHAPTER 4:   STUDY OF REGULAR CONVEX POLYGONS 

 

According to what was stated in Chapter 3, we will look into the regular convex 

polygons, such as the equilateral triangle, the square, and the regular hexagon, to find the optimal 

two-dimensional forms for tiling a planar field, Loss of Overlap. 

The Loss of Overlap (LOFO) of a regular convex polygon of area AT, compared to the 

sensing range AS of a sensor, is given by: 

 
𝐿𝑂𝐹𝑂 =

𝐴𝑆 − 𝐴𝑇

𝐴𝑆

 
  

where 𝐴𝑆 = 𝜋𝑟𝑆
2 (based on Network Model). 

Our goal is to discover the regular convex polygon which makes the most efficient use of 

the available sensing range. To rephrase, we need the regular convex polygon to reduce the 

unused sensing range, and this can be visualized in Figure 1. We set the criteria for best two-

dimensional regular convex shape as LOFO < 0.4, which means that the sensing range not being 

utilized by that regular convex polygon is less than 40%. The values of LOFO for equilateral 

triangle, square and regular hexagon, as calculated using equation is presented in Table 1. 

 

Figure 1. Biggest regular convex polygons inside a circle. 
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Table 1. LOFO values of Regular Convex Polygons. 

Regular Convex Polygon Area (AT) 
Loss of Overlap 

(LOFO) 

Equilateral Triangle 
3√3

4
𝑟𝑠

2 0.59 

Square 2𝑟𝑠
2 0.36 

Regular Hexagon 
3√3

2
𝑟𝑠

2 0.17 

 

In light of the data in Table 1, and the criteria set for best two-dimensional shape, it is 

clear that square and regular hexagon are the best regular convex polygons for tessellating a 

planar field. Leveraging the geometrical properties of these two shapes, we will be developing 

our k-coverage theory for each of the shape and formulate connected k-coverage protocols of 

them. Of all the researched works discussed in Chapter 3, Ammari’s works [10, 14, 15, 19, 20] 

are the only ones which developed a quantitative estimate for the least sensors needed to achieve 

k-coverage and has a specific procedure in building the k-coverage theory based on tessellation. 
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CHAPTER 5.   SQUARE TESSELLATION APPROACH 

 

This chapter delves into the challenge of k-covering a plane area of interest using a 

tessellation constructed from square tiles. In order to proceed with the solution, we state the 

planar k-coverage problem as: 

Instance of the k-coverage problem: If we have a collection of sensors and a square 

tessellation, how many sensors should we position such that every square tile in the tessellation 

is covered by some subset of those sensors (i.e., we have k-coverage)? 

5.1   Connected k-coverage Theory 

The aforementioned k-coverage issue instance may be solved in two stages. In order to 

achieve k-coverage of the field of interest, we first tessellate it using square tiles of certain size 

that are proportionate to the sensing range of the sensor, and then we create the sensor placement 

area. 

5.1.1   Square tessellation generation 

As an initial step towards solving the problem, we tessellate the planar field of interest 

into adjacent and non-intersecting square tiles of side length st whose value is the value of 

sensing range rs of the sensors. Figure 2 shows this generated square tessellation. 
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Figure 2. Square tessellation of square tile side length st. 

5.1.2   Sensor placement area construction 

We create a cusp square region within each square tile for sensor placement after 

tessellating the planar field of interest, as illustrated in Figure 3. To get k-coverage of every 

square tile, we strategically position k sensors within every cusp square. 

 

Figure 3. Cusp-square EFGH inside square tile ABCD 

Let us consider a square tile T of the tessellation. Now, we draw circles of radius rs 

centered at each vertex of T, where an enclosed area is formed due to the intersection of these 

four circles. We call this enclosed area, cusp square. The distance between any neighboring pair 
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of vertices in this cusp square is the same (as in a square), and the sides of this cusp square are 

the arcs of the four circles. 

Lemma 1 establishes a maximum allowable distance between any two vertices of a cusp 

square and a square tile. 

Lemma 1 (Largest Distance in Square Tile): The maximum Euclidean distance between two 

points X and Y is rs, where the domain of X is the set of vertices of a square tile and the domain 

of Y is the set of vertices of the corresponding cusp square. That is, δ(X, Y) ≤ rs, X ∈ {vertices of 

square tile} and Y ∈ {vertices of cusp square}, where δ is the Euclidean distance function. 

Proof: Let us consider vertex A of square tile (Figure 3) and the farthest vertices of cusp square 

from vertex A are the vertices F and G. However, the vertices F and G are two points located on 

the circle whose center is vertex A and radius is rs. Also, the other vertices H and E are inside the 

circle, making their distance from vertex A lesser than rs. Similarly, the other vertices B, C and D 

exhibit the same geometric properties towards the vertices of the cusp square. Therefore, we can 

say that the largest possible distance between any vertex of a square tile and any vertex of its 

corresponding cusp square is rs. 

Using the conclusions of Lemma 1, the following Lemma 2 illustrates the requirement for 

k-coverage of a tile in a square tessellation. 

Lemma 2 (Square Tile k-Coverage): If there are k active sensors set in the cusp square area of the 

tile, then the tile is k-covered. 

Proof: In order to go on, we need just think about the minimum and maximum possible sensor 

placements in the tile's cusp square area. The minimum value scenario is represented by a sensor 
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located in the exact middle of the cusp square, while the upper bound case corresponds to the 

placement of a sensor at any vertex of the cusp square. 

Case 1 (Lower bound): In this case measuring from one sensor to the furthest point of a square 

tile (vertex of the square tile) is given by: 

𝑑1 =
√2

2
𝑟𝑠 = 0.707 𝑟𝑠 

Case 2 (Upper bound): From Lemma 1, measuring from one sensor to the furthest point of a 

square tile (vertex of the square tile) is computed as follows: 

𝑑2 = 𝑟𝑠  

Therefore, the distance between a sensor and the farthest point on a square tile falls in the range 

of [0.707rs, rs]. From this, it is clear that any sensor placed between these lower and upper 

position bounds will be able to cover the entire square tile. Consequently, if there are k sensors 

placed in between these lower and upper position bounds, all these k sensors will be able to k-

cover the entire square tile.  Therefore, for k-coverage of a square tile, k sensors must be placed 

in the tile's cusp square region. 

Using Lemma 2, Theorem 1 provides the necessary and sufficient conditions for 

complete k-coverage of the target area. 

Theorem 1 (k-Covered Field): Coverage of a region of interest is said to be "k-covered" if every 

cusp of the tessellation's square tiles has the minimum k active sensors. 

Proof: From the Lemma 2, a square tile is k-covered if it has k active sensors in its corresponding 

cusp square area. Therefore, if all the square tiles of the tessellation are k-covered then the entire 

field of interest is said to be k-covered. 
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Relying on the cusp square area of the appropriate square tile, Lemma 3 below calculates 

the amount of the k-covered region. 

Lemma 3 (k-Covered Area of Square tile): The k-covered area Ak formed by the bifurcation of 

the sensing disks of k sensors, which are placed in a cusp square area of its corresponding square 

tile, can be computed as follows: 

𝐴𝑘 = (
2𝜋 + 3 − 3√3

3
) 𝑟𝑠

2 

where rs is the sensing range of the sensors. 

Proof: The k-covered area corresponds to the largest area of the intersection, which is formed by 

the sensing areas of the sensors that are placed at cusp square area’s vertices of corresponding 

square tile. This k-covered area Ak is calculated as: 

𝐴𝑘 = 𝐴𝑆𝑞𝑢𝑎𝑟𝑒 𝐴𝐵𝐶𝐷 + 𝐴𝑎𝑟𝑐  𝐴𝐵  & 𝑙𝑖𝑛𝑒 𝐴𝐵 + 𝐴𝑎𝑟𝑐 𝐵𝐶  & 𝑙𝑖𝑛𝑒 𝐵𝐶 + 𝐴𝑎𝑟𝑐 𝐶𝐷 & 𝑙𝑖𝑛𝑒 𝐶𝐷 + 𝐴𝑎𝑟𝑐 𝐷𝐴 & 𝑙𝑖𝑛𝑒 𝐷𝐴  

where ASquare ABCD is the area of square ABCD and Aarc AB & line AB is the curved area formed 

between the arc AB and line segment AB, as shown in Figure 4. 

Notice that we have: 

𝐴𝑎𝑟𝑐 𝐴𝐵 & 𝑙𝑖𝑛𝑒 𝐴𝐵 = 𝐴𝑎𝑟𝑐  𝐵𝐶  & 𝑙𝑖𝑛𝑒 𝐵𝐶 = 𝐴𝑎𝑟𝑐 𝐶𝐷 & 𝑙𝑖𝑛𝑒 𝐶𝐷 = 𝐴𝑎𝑟𝑐 𝐷𝐴 & 𝑙𝑖𝑛𝑒 𝐷𝐴 

This implies that: 

𝐴𝑘 = 𝐴𝑆𝑞𝑢𝑎𝑟𝑒 𝐴𝐵𝐶𝐷 + 4 × 𝐴𝑎𝑟𝑐 𝐴𝐵 & 𝑙𝑖𝑛𝑒 𝐴𝐵  

where both 𝐴𝑆𝑞𝑢𝑎𝑟𝑒 𝐴𝐵𝐶𝐷  and 𝐴𝑎𝑟𝑐 𝐴𝐵 & 𝑙𝑖𝑛𝑒 𝐴𝐵  are computed as follows:  

𝐴𝑆𝑞𝑢𝑎𝑟𝑒 𝐴𝐵𝐶𝐷 = 𝑟𝑠
2  
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𝐴𝑎𝑟𝑐 𝐴𝐵 & 𝑙𝑖𝑛𝑒 𝐴𝐵 = (
𝜋

6
−

√3

4
) 𝑟𝑠

2 

Therefore, we obtain: 

𝐴𝑘 = (
2𝜋 + 3 − 3√3

3
) 𝑟𝑠

2 

 

Figure 4. k-Coverage area for a square tile 

Lemma 3 is used in Theorem 2 to calculate the planar density of sensors required to 

provide k-coverage of an area of interest. It depends on where the sensors are located within a 

square. 

Theorem 2 (Planar Sensor Density of Square tile): To k-cover an area of interest, we calculate 

the planar density of sensors needed, denoted by λ(k, rs), as follows: 

𝜆(𝑘, 𝑟𝑠) =
0.734𝑘

𝑟𝑠
2

 

where rs is the sensing range of the sensors, and k ≥ 1. 
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Proof: The planar sensor density of a square tile is the number of sensors deployed per area of 

the tile. As k-coverage is achieved when k sensors are distributed inside a cusp square 𝐴𝑘 , this 

planar sensor density, denoted by 𝜆(𝑘, 𝑟𝑠 ), is given by: 

𝜆(𝑘, 𝑟𝑠) =
𝑘

𝐴𝑘

 

By substituting the value of Ak from Lemma 3, we get: 

𝜆(𝑘, 𝑟𝑠) =
𝑘

(
2𝜋 + 3 − 3√3

3 ) 𝑟𝑠
2

=
0.734𝑘

𝑟𝑠
2

 

Notice that the planar sensor density 𝜆(𝑘, 𝑟𝑠) varies on k and rs. 

Remark 1: Theorem 2 demonstrates that the planar sensor density we have is lower than that 

calculated in Ammari's publications [10, 14, 15]. That is, our approach requires fewer sensors for 

k-coverage process of a planar field of interest, compared to the one proposed in Ammari’s 

works [10, 14, 15].  

Lemma 4 below specifies the correlation between the radii of the sensing range and the 

communication range of the sensors that should exist to provide network connectivity of 

PWSNs. This type of relationship is essential for producing connected k-coverage configurations 

during the whole operational lifetime of PWSNs. 

Lemma 4 (Network Connectivity for Square Tile): A Square tessellation-based k-coverage 

configuration is said to be interconnected if the radii of sensing and communication disks of the 

sensors, 𝑟𝑠 and 𝑟𝑐 , respectively, comply with the following inequality: 

𝑟𝑐 ≥ 2𝑟𝑠  
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Proof: Two of the most distant sensors must be able to exchange data with each other in order to 

guarantee network connection. Let us consider the cusp square configuration of adjacent square 

tiles, as shown in Figure 5. Also, sensors are far from each other when they are placed at the 

vertices of cusp square areas that correspond to adjacent square tiles. For cusp square E1F1G1H1, 

if a sensor si is placed at vertex E1, the farthest sensor sj from si should be placed at vertex G3 of 

cusp square E3F3G3H3, which corresponds to a square tile that is adjacent to the one associated 

with cusp square E1F1G1H1. The distance between vertex E1 and vertex G3 is twice the radius of 

the circle passing through the vertices E1, E2, F2, F3, G3 and H1. The line segment E1G3 forms the 

diameter of that circle, i.e., E1G3 = 2rs. In other words, to ensure that the two sensors si and sj at 

vertex E1 and vertex G3, respectively, can communicate with each other, the communication 

range of the sensors should be at least the length of line segment E1G3. Therefore, rc ≥ 2rs. 

 

Figure 5. Cusp-square configuration for adjacent square tiles 

Leveraging all the above-discussed and proved properties, we introduce our k-coverage 

protocol, called k-CSqu, which utilizes the cusp square areas of the square tiles of the square 

tessellation of a field of interest. Next, we discuss k-CSqu in detail. 
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5.2   k-CSqu Protocol 

In this section, we discuss our k-coverage using Cusp Squares (k-CSqu) protocol is a 

centralized protocol for deterministic sensing process, which is performed by the sink. Our 

protocol has two major phases: 

• Phase 1: Cusp Square generation for Square tessellation 

• Phase 2: Sensor selection and scheduling 

5.2.1   Cusp square generation 

In this first step, before starting the rounds of k-coverage, the sink tessellates a planar 

field of interest using square tiles. Then, to schedule the sensors for each k-coverage round, it 

builds the cusp square regions for all square tiles of the tessellation, as was previously stated. 

The generated cusp square areas remain static (unchanged) throughout all the k-coverage rounds 

for all square tiles, and act as restriction areas for the sensor selection process for k-covering the 

entire field of interest. 

5.2.2   Sensor selection and scheduling 

In this second step, the sink selects the sensors and schedules their participation in the k-

coverage process. Selecting and scheduling sensors such that their energy consumption drops 

down at about the same pace is the primary focus at this stage. This aids in ensuring that the 

battery power (or energy) of all the sensors runs out at about the same time, i.e., that they all 

have comparable lifespan. The second objective is to reduce the amount of energy used 

throughout each round of play so that the sensors' batteries last as long as possible. This will in 

turn help elongate the network operation lifetime. The sink identifies every sensor uniquely using 

its id and considers the sensors’ locations and remaining battery power in the selection process 

for sensor scheduling (or duty-cycling) in every round of k-coverage process. 
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All sensors start out in sleep mode, but they all wake up to receive scheduling 

instructions from the sink at the beginning of each k-coverage cycle. Sometimes, the scheduled 

sensors might be around the cusp square areas but not inside. In such cases, the sensors will 

move inside cusp square area of their square tiles, thus, consuming battery power due to their 

mobility. The sink uses the sensor selection results from Lemma 2 and Theorem 1 to k-cover the 

region. This phase concludes with sink sending out a schedule broadcast to all sensors, which 

includes the sensor ids that were chosen for this iteration of k-coverage. When a sensor gets the 

schedule, it looks for its id to see whether it is included. In this case, the sensor will remove its id 

from the program, broadcast the updated schedule to its immediate neighbors, and continue to 

function as a live participant in the coverage procedure. If not, it will only share the schedule 

with its immediate neighbors and enter sleep mode. 
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CHAPTER 6.   HEXAGONAL TESSELLATION APPROACH 

 

Using hexagonal tiles, we explore the issue of k-covering the field in this chapter. Next, 

we state our instance of the planar k-coverage problem as follows: 

Instance of the k-coverage problem: What is the optimal sensor deployment method for 

attaining k-coverage of a field with a given set of sensors and a hexagonal tessellation of that 

field, whereby each hexagonal tile of the tessellation may very well be k-covered by at least k 

sensors, where k > 1 ? 

6.1   Connected k-coverage Theory 

First, using a hexagonal tessellation, we want to resolve the 1-coverage problem of 

PWSNs, such that each point with in field is covered by at least 1 sensor(s). 

6.1.1   Regular hexagon-based tessellation 

We consider regular hexagon as the tile, of side length rs, where rs is the sensing range of 

sensor, for tessellating the field, and specify the sensor deployment strategy for attaining 1-

coverage in PWSNs. 

Sensor deployment for 1-coverage: As mentioned earlier, we tessellate the field using 

regular hexagons of side rs, and area 𝐴𝑅𝐻 =  
3√3

2
𝑟𝑠

2, as shown in Figure 6, and place 1 sensor at 

the center of each regular hexagonal tile to achieve 1-coverage of PWSN. 
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Figure 6. Regular hexagonal tessellation with side length rs 

Planar sensor density for 1-coverage: In light of this sensor deployment approach and the 

regular hexagon tiling, we can calculate the resulting planar sensor density as: 

𝜆(𝑟𝑠) =  
1

𝐴𝑅𝐻

=  
1

3√3
2

𝑟𝑠
2

=  
2

3√3𝑟𝑠
2

=  
0.38

𝑟𝑠
2

 

We can easily determine that the farthest distance between any two neighboring sensors 

is 2rs. Therefore, network connectivity is ensured if rc ≥ 2rs. 

To apply this method of sensor deployment to the k-coverage problem, k sensors must be 

positioned in the middle of the area of every regular hexagonal tile. But placing k sensors at the 

center is unrealistic and not possible in real time. So, in order to place k sensors we need a 

dedicated area in every tile, which is more realistic. 

6.1.2   Construction of irregular hexagonal tile 

We change the approach by, first modifying the regular hexagon tessellation side length 

to rs / 2, and second consider a diamond area formed by two equilateral triangles of same base in 
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the tessellation for placing k sensors, and then construct an irregular hexagon, which can be used 

as tile for tessellating the field. 

Let us consider a diamond area D of the tessellation. We draw circles of radius rs 

centered at each vertex of D, where an enclosed area is formed by the intersection of these four 

circles. In the intersection area, we obtain an irregular hexagon IrHx(rs/2) that is formed by 10 

equilateral triangles with rs / 2 side length, as depicted in Figure 7, that can be used as a tile to 

tessellate a field. 

 

Figure 7. Construction of Irregular Hexagon 

The coverage area for the configuration shown in Figure 7, is the sum of all 10 equilateral 

triangle areas and curvature areas formed at each side of the irregular hexagon, which is 

computed as: 

𝐴𝑘 =  [𝜋 +  
√3

8
−  

√15

4
−  4 sin−1 (

1

4
)] 𝑟𝑠

2 = 1.3791𝑟𝑠
2 
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Thus, the corresponding planar sensor density for the above irregular hexagon IrHx(rs/2) 

based sensor deployment is computed as follows: 

𝜆(𝑘,𝑟𝑠 ) =  
𝑘

𝐴𝑘

=  
𝑘

1.3791𝑟𝑠
2

=  
0.7251 𝑘

𝑟𝑠
2

 

Similarly, we can generate IrHx(rs/3), IrHx(rs/4) and IrHx(rs/5), by modifying the side 

length of the regular hexagonal tessellation as rs/3, rs/4 and rs/5 respectively, as shown in Figure 

8. We observed that planar sensor density 𝜆(𝑘,𝑟𝑠 ) pertaining to our irregular hexagon IrHx(rs/3) 

is lesser than that of IrHx(rs/2). Likewise, we found that the results achieved by IrHx(rs/4) are 

better than that of IrHx(rs/3), and results achieved by IrHx(rs/5) are better than that of IrHx(rs/4). 

 

 

Figure 8. Irregular hexagons for different side lengths, proportional to sensing radius rs 

6.1.3   Generalized irregular hexagonal tile 

We identified that the planar sensor density 𝜆(𝑘, 𝑟𝑠) of our irregular hexagon-based 

configuration, is not only dependent on number of sensors k and sensing radius rs, but also on 

side length of the regular hexagonal tessellation, which is proportional to sensing radius rs. 
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Let us consider a more generic side length of rs/n for our regular hexagonal tessellation, 

for understanding the properties of our irregular hexagon IrHx(rs/n). As noted from our previous 

cases (n = 2, 3, 4 and 5), our irregular hexagon IrHx(rs/n) has a distinct shape determined by the 

proportions of its six sides' lengths, i.e., 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐸, 𝐸𝐹 and 𝐹𝐴, number of rings of 

equilateral triangles comprising it, and number of triangles per ring (shown with different colors 

in Figure 8). Table 2(a) demonstrates the configuration of our irregular hexagon IrHx(rs/n), and 

Table 2(b) shows the total of equilateral triangles for each ring, both for n = 2, 3, 4, 5. 

Table 2(a). IrHx(rs/n) structure for n 

n 𝑨𝑩 𝑩𝑪 𝑪𝑫 𝑫𝑬 𝑬𝑭 𝑭𝑨 # Rings 

2 rs rs/2 rs/2 rs rs/2 rs/2 1 

3 rs 2rs/3 2rs/3 rs 2rs/3 2rs/3 2 

4 rs 3rs/4 3rs/4 rs 3rs/4 3rs/4 3 

5 rs 4rs/5 4rs/5 rs 4rs/5 4rs/5 4 

 

Table 2(b). Number of triangles per ring of IrHx(rs/n) for n 

n Ring #1 Ring #2 Ring #3 Ring #4 

2 10    

3 10 22   

4 10 22 34  

5 10 22 34 46 

 

We generalize the results from Table 2(a) above, in which the side length of the 

equilateral triangle is rs/n, to our irregular hexagon IrHx(rs/n). Table 3 illustrates those generic 

results for IrHx(rs/n). 
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Table 3. Generic structure of IrHx(rs/n) 

𝑨𝑩 𝑩𝑪 𝑪𝑫 𝑫𝑬 𝑬𝑭 𝑭𝑨 # Rings 

rs 
(𝑛 − 1)𝑟𝑠

𝑛
 

(𝑛 − 1)𝑟𝑠

𝑛
 rs 

(𝑛 − 1)𝑟𝑠

𝑛
 

(𝑛 − 1)𝑟𝑠

𝑛
 n – 1  

 

Lemma 5 below, which exploits the results illustrated by Table 3, computes the number 

of equilateral triangles for any ring l of our irregular hexagon IrHx(rs/n). 

Lemma 5 (Number of triangles per ring): In an irregular hexagon IrHx(rs/n), number of 

equilateral triangles in ring l can be computed as: 

𝑁𝑙 = 12𝑙 − 2 

Proof: The results of Table 2(b) illustrate that for any value of n, the number of triangles for a 

certain ring of IrHx(rs/n) is constant, i.e., for a ring p, the number of equilateral triangles Nl=p is 

same for all values of n, where n is natural number and n > 1. 

Let us consider the results in Table 2(b) for n = 5, we have Nl=1 = 10, Nl=2 = 22, Nl=3 = 34, and 

Nl=4 = 46. It is clear that the difference between the consecutive pairs of Nl values is constant, 

i.e., Nl=2 - Nl=1 = Nl=3 - Nl=2 = Nl=4 - Nl=3 = 12. Thus, we can say that the Nl values for all rings of 

our irregular hexagon are in arithmetic progression (or sequence), where the initial term N0 = 10 

and common difference d = 12. This means that lth term of this arithmetic progression gives us 

the number of equilateral triangles present in the ring l. 

Therefore, number of equilateral triangles in ring l is computed as: 

𝑁𝑙 = 10 + (𝑙 − 1) × 12 = 12𝑙 − 2 

Lemma 6 below computes the total number of equilateral triangles in our generic 

irregular hexagon IrHx(rs/n), by leveraging the results of Lemma 5. 
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Lemma 6 (Total triangles in IrHx(rs/n)): Total number of equilateral triangles N, that comprise 

our generic irregular hexagon IrHx(rs/n) is given by: 

𝑁 = 2(𝑛 − 1)(3𝑛 − 1) 

Proof: From Lemma 3, we know that number of equilateral triangles for any ring l of IrHx(rs/n) 

is Nl = 12l – 2, and total number of rings of IrHx(rs/n) is n – 1. 

So, total number of equilateral triangles of IrHx(rs/n) can be calculated as: 

𝑁 = ∑ 𝑁𝑙

𝑛−1

𝑙=1

=  ∑ 12𝑙 − 2

𝑛−1

𝑙=1

 

     = ∑ 12𝑙

𝑛−1

𝑙=1

−  ∑ 2

𝑛−1

𝑙=1

 

     =  12 × ∑ 𝑙

𝑛−1

𝑙=1

−  2 × ∑ 1

𝑛−1

𝑙=1

 

     =  12 ×  
(𝑛 − 1) 𝑛

2
− 2 × (𝑛 − 1) 

     = 6𝑛(𝑛 − 1) − 2(𝑛 − 1) 

     = (𝑛 − 1)(6𝑛 − 2) 

     = 2(𝑛 − 1)(3𝑛 − 1) 

Therefore, total number of equilateral triangles of IrHx(rs/n) is given by N = 2(n – 1)(3n – 1) 

Lemma 7 below computes the curved area between the arc AB and line segment 𝐴𝐵, 

which is also the same curved area between the arc DE and line segment 𝐷𝐸. 
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Lemma 7 (Curved Area above Longer Side): The curved area suspended between the arc AB and 

line segment 𝐴𝐵 is computed as: 

𝐴𝐿𝑆 =  (
𝜋

6
−

√3

4
) 𝑟𝑠

2 

where rs is the sensing range of sensor. 

Proof: From Figure 9, it is evident that the circle c1 passing through the vertices A and B is 

centered at vertex O. Therefore, curved area formed between the arc AB and line segment 𝐴𝐵 is: 

𝐴𝐿𝑆 =  𝐴𝑆𝑒𝑐𝑡𝑜𝑟  𝐴𝑂𝐵 −  𝐴𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝐴𝑂𝐵  

        = 
𝜋𝑟𝑠

2

6
−  

√3𝑟𝑠
2

4
 

        = (
𝜋

6
−

√3

4
) 𝑟𝑠

2 

Lemma 8 below computes the curved area formed above the line segment 𝐵𝐶, which is 

formed by intersection of two circles. It is worth noting that the curved formed above the sides 

𝐵𝐶, 𝐶𝐷, 𝐸𝐹, and 𝐹𝐴 are all equal. 

 

Figure 9. Curved area between arc AB and line segment AB 
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Lemma 8 (Curved Area above Shorter Side): The curved area formed above the side 𝐵𝐶 is 

computed as: 

𝐴𝑆𝑆 =  [
𝜋

6
+ sin−1 (

−1

2𝑛
) −

√4𝑛2 − 1

4𝑛2
−

√3(𝑛 − 2)

4𝑛
] 𝑟𝑠

2  

where rs is the sensing range of sensor. 

Proof: Let us consider the coordinate system, demonstrated in Figure 10, where side BC is X-

axis and B is the origin. Also, it is evident that the area suspended by arc BI and line segment BH 

is equal to the area suspended by arc CI and line segment CH, due to symmetry, where vertex I is 

the intersection point of two circles and H is the mid-point of side 𝐵𝐶. 

 

Figure 10. Curved area formed above the line segment BC 

As circle c1 is centered at vertex O1 (
𝑟𝑠

2
,

−√3𝑟𝑠

2
), we get the equation of circle c1 as: 

𝑐1 : (𝑥 − 
𝑟𝑠

2
)

2

+ (𝑦 + 
√3𝑟𝑠

2
)

2

=  𝑟𝑠
2  

⟹ 𝑦𝑐1
=  √𝑟𝑠

2 − (𝑥 − 
𝑟𝑠

2
)

2

−
√3𝑟𝑠

2
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Now, we can compute the area between the arc BI and line segment BH as: 

𝐴𝐵𝐼𝐻 =  ∫ ∫ 𝑑𝑦 𝑑𝑥

𝑦𝑐1

0

𝑛−1
2𝑛

𝑟𝑠

0

 

          = ∫ 𝑦𝑐1
 𝑑𝑥

𝑛−1
2𝑛

𝑟𝑠

0

 

          = ∫ √𝑟𝑠
2 − (𝑥 −  

𝑟𝑠

2
)

2

−
√3𝑟𝑠

2
  𝑑𝑥

𝑛−1
2𝑛

𝑟𝑠

0

 

          = [
𝜋

6
+ sin−1 (

−1

2𝑛
) −

√4𝑛2 − 1

4𝑛2
−

√3(𝑛 − 2)

4𝑛
]

𝑟𝑠
2

2
 

Therefore, the curved area formed above the side 𝐵𝐶 is: 

𝐴𝑆𝑆 = 2 ×  𝐴𝐵𝐼𝐻  

        = [
𝜋

6
+ sin−1 (

−1

2𝑛
) −

√4𝑛2 − 1

4𝑛2
−

√3(𝑛 − 2)

4𝑛
] 𝑟𝑠

2 

Lemma 9 below computes the size of k-covered area based on our generic irregular 

hexagon IrHx(rs/n), exploiting the results of Lemma 6, Lemma 7, and Lemma 8. 

Lemma 9 (k-Covered Area): The k-covered area Ak formed by the convergence of the sensing 

disks of k sensors, which are placed in inner diamond area of our generic irregular hexagon 

IrHx(rs/n), can be computed as follows: 

𝐴𝑘 =  [𝜋 +  
(3𝑛2 − 6𝑛 + 2)√3

4𝑛2
−

√4𝑛2 − 1

𝑛2
− 4 sin−1 (

1

2𝑛
)] 𝑟𝑠

2 
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where rs is the sensing range of sensor, and n is a natural number such that n ≥ 1. 

Proof: The k-covered area is the largest convergence area, which is formed by the sensing disks 

of the sensors that are placed at the vertices of inner diamond area of our generic irregular 

hexagon IrHx(rs/n). This k-covered area Ak is computed as: 

𝐴𝑘 =  𝐴𝐻𝑒𝑥𝑎𝑔𝑜𝑛  𝐴𝐵𝐶𝐷𝐸𝐹 +  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒  𝐴𝐵 +  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎  𝑎𝑏𝑜𝑣𝑒  𝐵𝐶 +  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒  𝐶𝐷

+  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒  𝐷𝐸 +  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒  𝐸𝐹 +  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎  𝑎𝑏𝑜𝑣𝑒  𝐹𝐴  

Notice that we have: 

𝐴𝐻𝑒𝑥𝑎𝑔𝑜𝑛 𝐴𝐵𝐶𝐷𝐸𝐹 = 𝑁 ×
√3

4
(

𝑟𝑠

𝑛
)

2

=  (𝑛 − 1)(3𝑛 − 1)
√3

2
(

𝑟𝑠

𝑛
)

2

 (Lemma 4), 

𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎  𝑎𝑏𝑜𝑣𝑒  𝐴𝐵 =  𝐴𝐶𝑢𝑟𝑣𝑒𝑑 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 𝐷𝐸 =  𝐴𝐿𝑆  (Lemma 5) and, 

𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎  𝑎𝑏𝑜𝑣𝑒  𝐵𝐶 =  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒  𝐶𝐷 =  𝐴𝐶𝑢𝑟𝑣𝑒𝑑  𝑎𝑟𝑒𝑎  𝑎𝑏𝑜𝑣𝑒 𝐸𝐹 =

 𝐴𝐶𝑢𝑟𝑣𝑒𝑑 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 𝐹𝐴 =  𝐴𝑆𝑆 (Lemma 6) 

Thus, we have the k-covered area as: 

𝐴𝑘 = 𝐴𝐻𝑒𝑥𝑎𝑔𝑜𝑛 𝐴𝐵𝐶𝐷𝐸𝐹 + 2𝐴𝐿𝑆 +  4𝐴𝑆𝑆 

      = (𝑛 − 1)(3𝑛 − 1) √3

2
(

𝑟𝑠

𝑛
)

2

+ 2 × (
𝜋

6
−

√3

4
) 𝑟𝑠

2 +  4 × [𝜋

6
+ sin−1 (

−1

2𝑛
) −

√4𝑛2 −1

4𝑛2 −
√3(𝑛−2)

4𝑛
] 𝑟𝑠

2  

      = [𝜋 + 
(3𝑛2 − 6𝑛 + 2)√3

4𝑛2
−

√4𝑛2 − 1

𝑛2
− 4 sin−1 (

1

2𝑛
)] 𝑟𝑠

2  

Lemma 9 is used in Theorem 3 below to calculate the required planar sensor density to 

guarantee k-coverage of the field. It is based on the sensor deployment within the inner diamond 

area of IrHx(rs/n). 
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Theorem 3 (Planar Sensor Density): The planar sensor density 𝜆(𝑘, 𝑟𝑠 , 𝑛), that is required in 

order to k-cover a field, is calculated as: 

𝜆(𝑘, 𝑟𝑠, 𝑛) =  
𝑘

[𝜋 +  
(3𝑛2 − 6𝑛 + 2)√3

4𝑛2 − √4𝑛2 − 1
𝑛2 − 4 sin−1 (

1
2𝑛

)] 𝑟𝑠
2

 

where rs is the sensing range of sensor, k and n are natural numbers, such that k ≥ 1 and n > 1. 

Proof: The planar sensor density of an irregular hexagonal tile is the number of sensors deployed 

per unit tile area. Hence, given that k sensors are placed within the inner diamond area to k-cover 

𝐴𝑘 , this planar sensor density, denoted by 𝜆(𝑘, 𝑟𝑠 , 𝑛), is given by: 

𝜆(𝑘, 𝑟𝑠 , 𝑛) =  
𝑘

𝐴𝑘

 

By substituting the value of 𝐴𝑘  from Lemma 9, we get: 

𝜆(𝑘, 𝑟𝑠, 𝑛) =  
𝑘

[𝜋 +  
(3𝑛2 − 6𝑛 + 2)√3

4𝑛2 − √4𝑛2 − 1
𝑛2 − 4 sin−1 (

1
2𝑛

)] 𝑟𝑠
2

 

Notice that the planar sensor density 𝜆(𝑘, 𝑟𝑠, 𝑛) depends only on k, rs and n. 

Remark 2: It is evident from Table 4 that, our result from Theorem 3 is a lesser planar 

sensor density compared to that of one deduced in Ammari’s works, 𝜆(𝑘, 𝑟𝑠 ) =
0.8141 𝑘

𝑟𝑠
2  [10, 14, 

15], regardless of the value of n. This means, our approach achieves k-coverage of field with 

smaller number of sensors compared thereto of Ammari’s works [10, 14, 15]. 
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Table 4. 𝜆(𝑘, 𝑟𝑠, 𝑛) as a function of n 

n 2 3 4 5 10 20 100 ꝏ 

𝝀(𝒌, 𝒓𝒔 , 𝒏) 
0.7251  𝑘

𝑟𝑠
2

 
0.4267  𝑘

𝑟𝑠
2

 
0.3511  𝑘

𝑟𝑠
2

 
0.3168  𝑘

𝑟𝑠
2

 
0.2639  𝑘

𝑟𝑠
2

 
0.2431  𝑘

𝑟𝑠
2

 
0.2252  𝑘

𝑟𝑠
2

 
0.2252  𝑘

𝑟𝑠
2

 

 

Lemma 10 indicates requisite relationship between sensing and communication ranges of 

sensors for continuous network operation of PWSNs. This relationship is the key attribute for 

attaining connected k-coverage during the entire operational lifetime of PWSNs. 

Lemma 10 (Network Connectivity): An Irregular Hexagonal tessellation-based k-coverage 

configuration of sensors are mutually connected to each other, directly or indirectly, if the 

sensing and communication radii of sensors, rs and rc respectively, comply with the following 

inequality: 

𝑟𝑐  ≥  
√3𝑛2 + 1

𝑛
𝑟𝑠  

Proof: The essential condition for maintaining network connectivity is that A two-way 

communication between the farthest sensors is necessary. Let us consider the adjacent generic 

irregular hexagonal configuration comprising the tiles T1, T2, T3 and T4, as shown in Figure 11. 

Also, sensors are far from each other when they are placed at the vertices of inner diamond areas 

that correspond to adjacent irregular hexagonal tiles. For inner diamond A1B1C1D1 of tile T1, if a 

sensor si is placed at vertex B1, the farthest sensor sj from si should be placed at either vertex D3 

of inner diamond A3B3C3D3 of tile T3, or vertex D4 of inner diamond A4B4C4D4 of tile T4. We 

also have two other sensor placements, vertex A1 to vertex C3 and vertex C1 to vertex A4, that are 

equivalent to the ones discussed above, but as all the lengths are equal, we will compute the 

length of 𝐵1𝐷4. 
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Figure 11. Inner diamond areas of adjacent generic irregular hexagons IrHx(rs/n) 

Length of 𝐵1𝐷4 is computed as: 

𝐵1𝐷4

2
= 𝐵1𝐹4

2
+ 𝐹4𝐷4

2
 

             = (
𝑟𝑠

2𝑛
+

𝑟𝑠

2
+

(𝑛 − 1)𝑟𝑠

2𝑛
+

𝑟𝑠

2
+

𝑟𝑠

2𝑛
)

2

+ (
√3(𝑛 − 1)𝑟𝑠

2𝑛
)

2

 

             = [
(3𝑛2 + 1)𝑟𝑠

2

𝑛2
] 

⟹  𝐵1𝐷4 =  
√3𝑛2 + 1

𝑛
𝑟𝑠 

Therefore, 𝑟𝑐  ≥  
√3𝑛2+1

𝑛
𝑟𝑠. 

Lemma 11 below, deduces a generic inequality involving the value of n. 

Lemma 11 (n-Inequality): For any value of n, the following inequality holds true, 
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√3𝑛2 + 1

𝑛
 < 2 

where n is a natural number and n > 1. 

Proof: Let us consider the domain of n, i.e., n > 1. 

Raise to the power 2 on both sides of inequality, we get, 

𝑛2  > 1 

Add 3n2 on both sides of inequality, we get, 

⟹ 𝑛2 + 3𝑛2  > 1 + 3𝑛2 

⟹ 4𝑛2 > 1 + 3𝑛2 

Apply square root on both sides of inequality, we get, 

⟹ 2𝑛 > √1 + 3𝑛2  

Divide by n on both sides of inequality, we get, 

⟹ 2 >
√3𝑛2 + 1

𝑛
 

Therefore, 
√3𝑛2 +1

𝑛
 < 2 

Remark 3: Based on the results of Lemma 10 and Lemma 11, it is evident that our 

approach necessitates 𝑟𝑐 ≥  
√3𝑛2 +1

𝑛
𝑟𝑠 < 2𝑟𝑠, which is better compared to that Wang et al. [21, 22] 

approach that requires 𝑟𝑐 ≥ 2𝑟𝑠. This means, our approach requires lesser powered sensors that of 

Wang et al. [21, 22]. 
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Based on all the proven mathematical properties, we can now generate a guided 

tessellation, utilizing the existing regular hexagonal tessellation, with our irregular hexagon 

IrHx(rs/n) as the new tile. Leveraging all the above-examined and established mathematical 

properties, we introduce our connected k-coverage protocol, called k-InDi, which utilizes the 

inner diamond areas of the irregular hexagonal tiles of the tessellation of field. Next, we discuss 

k-InDi in detail. 

6.2   k-InDi Protocol 

In this section, we discuss our k-coverage using Inner Diamonds (k-InDi) protocol, which 

is a centralized protocol of deterministic sensing model. Our protocol has two major phases: 

• Phase 1: Irregular Hexagon tessellation generation 

• Phase 2: Sensor selection and scheduling 

6.2.1   Irregular hexagon tessellation generation 

In this first phase, before initiating the k-coverage rounds, the sink tessellates the planar 

field using regular hexagonal tiles of side length rs/n, based on the n value. Then, as discussed 

earlier, it initially generates one base irregular hexagon IrHx(rs/n) using a diamond area and 

utilizing this base hexagon, it guided tessellates over the existing regular hexagonal tessellation. 

This newly generated tessellation of IrHx(rs/n) remains static (unchanged) throughout the k-

coverage process, and the inner diamond areas of each irregular hexagonal tile act as the 

bounded area for the sensor selection process for k-covering the entire planar field. 

6.2.2   Sensor selection and scheduling 

The sink chooses the sensors and arranges for participation in the k-coverage rounds 

during this second phase. This phase's main objective is to choose and duty-cycle (schedule) the 

sensors in a way that will maintain a nearly constant energy depletion rate over the course of the 
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whole k-coverage rounds. This implies that all sensors will have comparable lifetimes. This 

phase's secondary objective is to reduce battery power consumption every k-coverage round, 

which implicitly ensures prolonged lifetime and extends the operational lifetime of the network. 

Every sensor is assigned a unique identifier (id) by the sink, and the selection process for sensor 

scheduling (or duty-cycling) for each k-coverage round takes into account the sensors' locations 

and remaining battery power. 

All sensors will initially be in the sleep mode, and for each k-coverage round, the sleep 

mode sensors will awaken in order to receive the scheduling instructions from the sink. The 

scheduled sensors may occasionally be outside the interior diamond sections but not within. In 

these situations, the sensors would move outside the confines of the inner diamond area of their 

asymmetric hexagonal tile, using battery power for mobility. The schedule, which contains a list 

of the scheduled sensors' ids for that particular k-coverage round, is broadcast by the sink at the 

conclusion of this step to all sensors. A sensor checks to see if its id is listed in the scheduling list 

after receiving the schedule. If this is the case, the sensor removes its id from the scheduling list, 

sends the modified schedule to its one-hop neighbors, and continues to be active for the k-

coverage procedure. If not, it merely enters sleep mode after forwarding the schedule to its one-

hop neighbors without making any changes to the scheduling list. 
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CHAPTER 7.   RESULTS AND DISCUSSION 

 

The simulation results of our suggested k-coverage methods are presented in this chapter, 

k-CSqu and k-InDi, using an open source high-level simulator [23] which is built using C and 

Python languages. We have modified the simulator to simulate k-coverage scenarios where 

degree of coverage k and tiling shape are provided as inputs. Also, we have added functionalities 

for plotting multiple results of the simulations performed. Next, our simulation environment is 

described in detail. Finally, we talk about our protocols' simulation performance for solving the 

connected k-coverage problem in PWSNs. 

7.1   Simulation Environment 

Our k-coverage protocols k-CSqu and k-InDi can be employed on any planar area 

regardless of its geometrical shape, be an irregular or regular polygon, like triangle, rectangle, 

hexagon, or decagon, to name a few. This study takes into account a 250-m-square area of 

interest. To ensure the proper functioning of our connected k-coverage protocols, k-CSqu and k-

InDi, we assume that the initial battery capacity of sensor is 70 J, and we account for all forms of 

battery energy usage, including data sensing, data transfer, data reception, sensor agility, and 

control messages, in our energy model (Section 2.3). We presume a monitoring field of 1000 

sensors, distributed equally and at random across the region of focus (Section 2.4). In addition, 

we presume that the sensor disk radii, both for sensing and communication, are 25 m and 50 m. 

Every simulation is repeated a hundred times, and the mean of the results is selected. 

7.2   Results of k-CSqu 

The results of the simulation for our k-CSqu protocol are presented here.  
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Figure 12 shows the variation of theoretical planar sensor density λtheo (based on Theorem 

2) and simulation planar sensor density λsim (for our k-CSqu protocol) with changing sensing radius 

rs and degree of coverage k, for specific conditions. Figure 12(a) plots both λtheo and λsim for varying 

rs where k = 3. As expected, both  λtheo and λsim decreases with increasing rs for a constant k. Figure 

12(b) plots λtheo and λsim for varying k where rs = 25 m. We observe that, both λtheo and λsim increases 

with increasing k, as expected for a constant rs. Though the behavior is as expected, there is slight 

difference between the λtheo and λsim that is clearly visible, and our protocol k-CSqu requires slightly 

higher sensor density compared to that of computed in Theorem 2. This is because, as calculated 

in Theorem 2, λtheo considers all the common k-cover regions around the square tile, which includes 

the square area as well as the four curved areas on each side of each square tile. These curved areas 

form over k-cover regions in the field of interest which are not considered in λsim.  

 

Figure 12. Planar sensor density λ versus (a) Sensing radius rs and (b) Degree of coverage k 

Figure 13 shows the number of active sensors na required compared to that of the number 

of deployed sensors nd for our k-CSqu protocol. In Figure 13(a), we performed experiments by 

varying rs, whereas in Figure 13(b), we performed experiments by varying k. For larger rs values, 

less sensors are needed to achieve the necessary k level, while a larger k value necessitates a 
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larger number of sensors to achieve the same rs level. In addition, in both evaluations, na is seen 

to be independent of nd, and only dependent on rs and k. 

 

Figure 13. Number of active sensors na versus Number of deployed sensors nd for different (a) 

Sensing radius rs and (b) Degree of coverage k 

In Figure 14, we can see the dependence of our k-CSqu protocol's degree of coverage k 

on the number of active sensors na. It is clear that k increases proportionally with na, also it 

should be noted that for a constant number of active sensors, k increases with increase in rs 

indicating that larger field of interest can be k-covered. 

 

Figure 14. Degree of coverage k versus Number of active sensor na 
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7.3   Results of k-InDi 

We demonstrate the simulation outcomes for our k-InDi procedure in this section. In 

Section 7.4, we contrast DIRACCk [14] with k-CSqu and k-InDi. 

Figure 15 shows the variation of theoretical planar sensor density λtheo (based on Theorem 

3) and simulation planar sensor density λsim (for our k-InDi protocol) with changing sensing 

radius rs, degree of coverage k and factor n, for specific conditions. Figure 15(a) plots λtheo and 

λsim for varying rs where k = 3 and n = 5. As expected, all three λtheo and λsim decreases with 

increasing rs for a constant k and n. Figure 15(b) plots λtheo and λsim for varying k where rs = 25 m 

and n = 5. We observe that, λtheo and λsim increases with increasing k, as expected for a constant rs 

and n. Figure 15(c) plots λtheo and λsim for varying n where k = 3 and rs = 25 m. As expected, λtheo 

and λsim decreases with increasing n for a constant k and rs.  
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Figure 15. Planar sensor density λ versus (a) Sensing radius rs, (b) Degree of coverage k and (c) 

factor n 

Though the behavior is as expected, there is slight difference between the λtheo and λsim 

that is clearly visible, and our protocol k-InDi requires slightly higher sensor density compared to 

that of computed in Theorem 3. This is because, as calculated in Theorem 3, λtheo considers all 

the common k-cover regions around the sides of the irregular hexagonal tile, which includes the 

hexagonal area as well as the six curved areas on each side of each irregular hexagon tile. These 

curved areas form over k-cover regions in the field of interest which are not considered in λsim. 

Figure 16 shows the number of active sensors na required compared to number of 

deployed sensors nd for our k-InDi protocol. In Figure 16(a), we performed experiments by 

varying rs, in Figure 16(b), we performed experiments by varying k and in Figure 16(c), we 

performed experiments by varying n. Clearly, as rs and n increase, the number of sensors needed 

to achieve a given k decreases, but as k increases, the number of sensors needed to achieve that k 

increases as well. Furthermore, it is evident from all experimental studies that the values of rs, n, 

and k influence na, but not nd. 
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Figure 16. Number of active sensors na versus Number of deployed sensors nd for different (a) 

Sensing radius rs, (b) Degree of coverage k and (c) factor n 

Figure 17 shows the correlation between the number of active sensors (na) and the 

coverage level (k) achieved by our k-InDi protocol. The experiments in Figure 17(a) are 

conducted by varying rs for constant n = 5, whereas in Figure 17(b), experiments are conducted 

by varying n for constant rs = 25 m. It is evident that for a fixed number of active sensors, k 

grows with rs, indicating that a wider area of interest can be covered by k. It is also evident that, k 

increases with increase in n indicating that a smaller number of larger irregular hexagonal tiles 

can be used for k-coverage process. 
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Figure 17. Degree of coverage k versus Number of active sensor na for different (a) Sensing 

radius rs and (b) factor n 

7.4   Comparison of k-CSqu and k-InDi with DIRACCk 

In this section we compare our protocols k-CSqu and k-InDi with DIRACCk [14]. In 

Chapter 3, we could see Ammari's research [10, 14, 15] looked into the issue of k-coverage in 

PWSNs and presented Reuleaux triangle-based protocols taking into account a degree of 

coverage k = 3. Hence, we consider k = 3 for comparing our protocols k-CSqu and k-InDi with 

Ammari’s protocol DIRACCk [14], which is proved to be better than CCP [21, 22].  

Figure 18 plots the comparison of simulation obtained planar sensor density λ of k-CSqu, 

k-InDi and DIRACCk protocols with varying sensing radius rs in Figure 18(a), varying degree of 

coverage k in Figure 18(b) and varying factor n in Figure 18(c). From the plots in Figure 18 (a) 

& (b), it is clear that our protocol k-InDi and k-CSqu have lower λ compared to that of 

DIRACCk, for a specific rs as well as k. Therefore, it is evident that for a specific level of k, our 

protocols k-InDi and k-CSqu allows for k-coverage of the field to be attained with a smaller 

sensor deployment compared to that of DIRACCk. In other words, we can say that for specific 

fixed λ, our protocols k-InDi and k-CSqu offers higher level of k compared to DIRACCk. Also 
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for a constant λ, k-InDi and k-CSqu requires low sensing range sensors for achieving desired 

level of k. Thus, it is clear that k-InDi and k-CSqu requires less powered sensors for k-coverage 

process (for desired conditions) compared to DIRACCk. Furthermore from Figure 18(c), we see 

that with increase in the factor n, the value of λ decreases proportionally, for a constant sensing 

radius rs and degree of coverage k. This indicates that our protocol k-InDi achieves same level of 

coverage for different λ, and it is clear that for higher value of n, our protocol achieves desired 

level of coverage with lesser number of sensors of same characteristics as initial power, sensing 

range, communication range and etc. 
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Figure 18. Planar sensor density λ versus (a) Sensing radius rs, (b) Degree of coverage k and (c) 

factor n, comparing k-InDi and DIRACCk 

Figure 19(a) shows the differences between k-InDi, k-CSqu and DIRACCk in respect to 

required total number of active sensors na compared to the total number deployed sensors nd. As 

inferred earlier from Figure 18 results, Figure 19(a) proves that our k-InDi and k-CSqu 

techniques achieves the same level of degree of coverage k, with fewer active sensors. Figure 

19(b) shows the relationship between the number of active sensors (na) and the coverage (k) for 

all k-InDi, k-CSqu, and DIRACCk protocols. It is clear and supports our prior conclusion that, for 

a given number of active sensors, k-InDi and k-CSqu provides a higher level of coverage than 

DIRACCk. As a result, given a particular targeted level of k, our protocols k-InDi and k-CSqu 

produces significant energy savings, hence increasing the operational time of the underlying 

sensor network. Reason being, DIRACCk requires more active sensors, which uses more energy 

for sensing, and messaging between active sensors using DIRACCk creates a communication 

overhead that prevents active sensors from cooperating with one another and providing the 

anticipated level of degree of coverage. As a result, DIRACCk network operations will use more 

energy to k-cover the area of interest. 
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Figure 19. (a) Number of active sensors na versus Number of deployed sensors nd (b) Degree of 

coverage k versus Number of active sensor na, comparing k-InDi and DIRACCk 

Figure 20 plots remaining energy versus time, shows the k-InDi, k-CSqu and DIRACCk 

protocols' energy consumption rate and operational network lifetime. Our previous hypotheses 

are confirmed by these results, that are deduced from the results of Figure19 (a) and (b) and is 

clear that the operational network lifetime of k-InDi and k-CSqu are greater than DIRACCk. 

 

Figure 20. Remaining Energy versus Time, indicating the network lifetime 

Figure 21(a) plots na versus rs with n = 5, whereas Figure 21(b) plots na versus rc with rs 

= 25 m and n = 5, for different values of k. In all cases we have considered the value of k as 3 

and 4. These results solidify our prior results, that k-InDi and k-CSqu offers higher level of k 

with fewer active sensors compared to DIRACCk. Also, for our experimental conditions, k-InDi 

offers 4-coverage with na lesser than that of required for 2-coverage by DIRACCk. It is worth 

noting that na depends on only rs, n and k, even for DIRACCk and for both k-CSqu and 

DIRACCk, na does not depend on the value of rc. 
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Figure 21. Number of active sensors na versus (a) Sensing radius rs and (b) Communication 

radius rc 
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CHAPTER 8.   CONCLUSION 

 

In this research, we investigate connected k-coverage problem of PWSNs using square 

tessellation and irregular hexagonal tessellation-based approaches. For square tessellation, we 

solve the issue concerning where to position sensors by constructing a cusp square area inside 

each square tile, and for irregular hexagonal tessellation, we address the sensor deployment 

problem by utilizing diamond areas in the tessellation and calculate the number of planar sensors 

required to maintain k-coverage of the field for each tessellation.. Then, we establish a 

correlation for both the sensing range and communication range of sensors necessary to keep a 

network up, thus, ensuring connected k-coverage pattern during the network operation. 

Furthermore, based on all the proved theoretical results and properties, we propose centralized k-

coverage protocols, k-CSqu and k-InDi. Based on the simulation results, it is proved that k-CSqu 

and k-InDi have better performance and more energy efficient compared  to that of DIRACCk 

[14], in respect to number of active sensors required for k-cover process and network operational 

time, where DIRACCk was proved to be better than CCP [21, 22] in Ammari’s work [14]. 

Our future work has multiple directions. Firstly, we are interested in finding an optimum 

value of n, the proportional factor used to standardize the regular hexagonal tessellation, for 

generating irregular hexagonal tessellation. Second, we plan to extend our k-CSqu and k-InDi 

approaches to heterogeneous sensors, which have varied characteristics, as far as available initial 

power, sensing, and transmission ranges are concerned [24]. Third, with a more comprehensive 

sensing model, that is stochastic [10, 18, 20] rather than deterministic, we concentrate on 

generalizing our k-CSqu and k-InDi approaches to take into account the sensors irregularity of 

the sensing and communication ranges. Fourth, We plan to study the issue of connected k-

coverage in three-dimensional WSNs, like underwater WSNs, by expanding our previously 
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presented theory of k-CSqu and k-InDi methods [25]. Finally, with the help of a sensor-testbed, 

we'll put our protocol through its paces in real-world conditions. 
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