
 

Square tessellation for stochastic connected k-

coverage in planar wireless sensor networks

Kalyan Nakka and Habib M. Ammari 
 

Wireless Sensor and Mobile Autonomous Networks (WiSeMAN) Research Lab 

Department of Electrical Engineering and Computer Science 

Frank H. Dotterweich College of Engineering 

Texas A&M University-Kingsville 

Kingsville, Texas 78363, USA 

Venkata_Swamy_Kalyan.Nakka@students.tamuk.edu, Habib.Ammari@tamuk.edu 

Abstract— In this paper, we focus on the problem of connected 

k-coverage in planar wireless sensor networks (PWSNs), where 

every point in a field of interest (FoI) is covered by at least k 

sensors simultaneously, while all the participating sensors are 

mutually connected, where k > 1. To this end, we develop a global 

framework using a square tessellation that considers both 

deterministic and stochastic sensing models. Initially, we tessellate 

a planar FoI into adjacent and congruent square tiles. In each tile 

of this tessellation, we construct a cusp-square area for sensor 

placement to achieve k-coverage. Based on this cusp-squared 

square tile configuration, we compute the minimum sensor density 

that is required for deterministic and stochastic k-coverage in 

PWSNs. Then, we establish the necessary relationship that should 

exist between the sensing and communication ranges of the sensors 

to maintain network connectivity in k-covered PWSNs. Finally, we 

propose our stochastic k-coverage protocol for sensor scheduling 

and substantiate our theoretical analysis with simulation results. 

Keywords—Planar wireless sensor networks, connected k-

coverage, stochastic sensing, sensor density, square tessellation. 

I. INTRODUCTION  

One of the important research problems in PWSNs is sensor 
scheduling with the primary goal of achieving reliable coverage 
of a FoI. There are various sensing applications, such as intruder 
detection and tracking, which require that each point in a FoI be 
sensed by at least one sensor. Specifically, k-coverage is an 
appealing solution, where every point in a FoI is sensed by at 
least k sensors, where k ≥ 1. Also, network connectivity should 
be maintained between the sensors so the data collected by the 
sensors is successfully sent to the sink for further processing and 
analysis. Thus, we attempt to solve the connected k-coverage 
problem in PWSNs, where k-coverage along with network 
connectivity are ensured using a minimum number of sensors. 

This paper is an extension of our previous work [20], where 
we addressed this problem of connected k-coverage in PWSNs 
using a square tessellation-based approach using deterministic 
sensing model. Here, we are interested in a realistic sensing 
model, i.e., stochastic sensing model, where a sensor covers a 
point in a FoI with some probability. 

A. Problem Statement 

We want to investigate the connected k-coverage problem in 
PWSNs by addressing the following four major inter-related 
questions: 

 Q1: What is the optimal way of placing the sensors for 
attaining k-coverage of a FoI, using a minimum number of 
sensors, where k ≥ 1 is the degree of coverage? 

 Q2: What is the minimum planar sensor density (i.e., number 
of sensors per unit area) for achieving k-coverage of a FoI, 
using the sensor placement strategy determined in Q1? 

 Q3: What is the relationship between the sensors’ sensing 
and communication ranges for maintaining network 
connectivity using the above sensor placement strategy? 

 Q4: What is the best way to select and schedule the sensors 
to k-cover a FoI using a deployed sensor density that is 
almost near the one obtained from Q2? 

B. Contributions and Organization 

Our contributions in this paper are summarized as follows: 

 We tessellate a FoI using square tiles whose dimensions are 
proportional to the sensing radius of the sensors. 

 We construct a cusp-square area in each square tile and 
deploy a minimum number of sensors in each cusp-square 
area for attaining k-coverage of a FoI, where k > 1. 

 We compute the sensor density for the above proposed 
sensor placement strategy for k-coverage, where k > 1. 

 We compute the necessary relationship between the sensors’ 
sensing and communication ranges for the above proposed 
sensor placement strategy to achieve connected k-coverage. 

 We generalize our solution to the connected k-coverage 
problem using a stochastic sensing model, where the 
sensing range of the sensors has an irregular shape.  

 We propose a sensor selection protocol, where the sensors 
are scheduled to k-cover a FoI, while optimizing the overall 
energy consumption so as to extend the network lifetime. 

 We substantiate our theoretical analysis using simulation 
results. We observe a close-to-perfect match between them. 

The rest of the paper is organized as follows. In Section II, 
we introduce our models. Section III provides a review of related 
work. In Section IV, we solve the connected k-coverage problem 
using both sensing models and present our stochastic connected 
k-coverage protocol. In Section V, we assess it by comparing the 
simulation and theoretical results. Also, we compare it with 
existing stochastic connected k-coverage protocols, SCPk [5] 
and RCHk [8]. Finally, in Section VI, we conclude our paper. 

This research has been supported by the National Science Foundation 
under grant 2219785. 
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II. MODELS 

A. Sensing Model 

We assume that the radii of the sensing and communication 
ranges as rs and rc, respectively, and consider both deterministic  
and stochastic sensing models to solve the connected k-coverage 
problem. In a deterministic sensing model, a point P is said to 
be covered by the sensor s iff the Euclidean distance δ(P, s) 
between P and s is less than or equal to rs. This model does not 
consider the uncertainty of sensor reading capabilities. Hence, 
considering signal attenuation and noisy sensor readings, we use 
a stochastic sensing model that considers the coverage Cov(P, s) 
as the probability of detection p(P, s), as in (1). 

 �(�, �) = � 	
��(,�)�       �� �(�, �) ≤  �� 0                              ��ℎ	����	 (1) 

where β represents the physical characteristics of the sensor’s 

sensing unit, and α ∈ [2, 4] is the path-loss exponent. 

B. Energy Model 

We consider the energy model [2] that computes the energy 
consumed due to data transmission and reception by the sensors: 

 ��(�) = � × (!�" + �$) (2) 

 �% = � × �$ (3) 

where Et(d) is the energy consumed by sensor s while 
transmitting a message of b bits over a distance d, Er is the 
energy consumed by sensor s while receiving a message of b 
bits, Ee is the electronical energy, ε is the transmitter amplifier 
in the free-space (εfs) or multi-path (εmp) model, and α is the path-
loss exponent. Using the energy model proposed by Ye et al. [3], 
a sensor consumes 0.012 J in idle mode, 0.0003 J in sleep mode, 
and a randomly value in [0.008, 0.012] J/m [4] when moving. 

III. RELATED WORK 

Ammari [5, 6] solved the k-coverage problem using 
Reuleaux triangle-based tessellation. Yu et al. [9] proposed 
stochastic k-coverage protocol ISCPk which models the sensing 
range of sensor as four regular pentagons in PWSNs, by placing 
k-1 sensors in central areas of these four regular pentagons. Sun 
et al. [10] developed a k-coverage algorithm based on the 
optimization node deployment process. Unlike from previous 
research [5, 6], in [7] Ammari has worked on regular hexagon-
based tessellation and constructed a generic irregular hexagon 
that can be laid over the regular hexagon tessellation for 
increasing k-coverage area and minimizing the number of 
sensors being used. Abbasi et al. [17] suggested a method for 
coverage control in continuous and potentially long regions and 
passages, where optimal coverage is ensured by a group of 
autonomous mobile sensors which move within the boundaries 
of the regions/passages. Similar to [12, 14, 16], Harizan and 
Kuila [18] addressed the k-coverage problem in PWSNs using 
heuristic and nature-inspired algorithms. Natarajan and 
Parthiban [19] used shuffled frog leaping Nelder-Mead 
algorithm, for optimal node placement to achieve k-coverage of 
target locations in FoI. Similar to [7], In [8] Ammari worked on 
regular hexagon-based tessellation and proposed stochastic 
protocol RCHk which uses sliced hexagons for sensor 
placement, unlike the irregular hexagon [7]. Similar to Ammari 

[5, 6], Yu et al. [11] has used Reuleaux triangle-based 
tessellation and constructed coverage contribution area (CCA) 
for sensor placement. Krishnan et al. [12] has studied the 
performance of ten different approaches for achieving k-
coverage in PWSNs. Chenait et al. [13] has proposed SRA-Per 
and SRA-SP protocols based on sector redundancy 
determination algorithm. The latter determines the redundant 
sensors that are not required for the k-coverage process by 
slicing the sensing range of the sensors using predefined sector 
angle. Elhoseny et al. [14] suggested a genetic algorithm-based 
approach for the k-coverage of specific target locations in a FoI, 
while maximizing the network lifetime. Hoyingcharoen and 
Teerapabkajorndet [15] evaluated the expected sensing 
probability at any given location as well as the expected level of 
connectivity to the sink for any sensor that is unable to transfer 
data directly to the sink. Naik and Shetty [16] exploited the DE 
algorithm for estimating the optimal candidate locations in a FoI 
for sensor deployment in order to achieve the required k-
coverage of specific target locations in a FoI. 

IV. TESSELLATION-BASED CONNECTED K-COVERAGE 

In this section, we investigate the problem of connected k-
coverage in PWSNs using square tiles and deterministic sensing 
model. First, we tessellate a FoI using square tiles and generate 
a square tessellation. Second, we build specific region inside 
each of the square tile for sensor placement. Based on this sensor 
placement strategy, we compute the planar sensor density 
required to k-cover a planar FoI. Next, we compute the 
necessary relationship that must exist between the sensing radius 
rs and communication radius rc to ensure network connectivity. 
We apply this same approach to a stochastic sensing model. 

A. Deterministic Sensing Model 

Based on the generated square tessellation, we construct a 
cusp square area inside the square tile for sensor placement 
(Figure 1). and the strategy is to place k sensors in this cusp 
square area to achieve k-coverage of the square tile (Figure 2). 
Based on this strategy of sensor placement, we present Theorem 
1, which states the sufficient condition for k-coverage using our 
square tessellation and its cusp square area configuration. 

Theorem 1 (k-Covered Field) [20]: A FoI is k-covered if each 
of the square tiles of the tessellation has at least k active sensors 
placed in its corresponding cusp square area. 

Lemma 1 below computes the k-coverage area for a square 
tile based on the cusp square area configuration. 

 

Fig. 1. Cusp square area of square 
tile. 

 

Fig. 2. k-coverage area of Square 
tile. 
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Lemma 1 (k-Covered Area) [21]: The k-covered area Ak formed 
by the intersection of the sensing disks of k sensors placed in a 
cusp square area of its corresponding square tile, can be 
computed as follows: 

&' = (2* + 3 − 3√33 . ��/ 

where rs is the radius of the sensing range of the sensors.  

Theorem 2 (Sensor Density) [20]: The sensor density λ(k, rs), 
which is required to k-cover a FoI, is computed as follows: 

0(1, ��) = 0.7341��/  

where rs is the sensing radius of sensor, and k ≥ 1. 

Lemma 2 (Network Connectivity) [20]: A Square tessellation-
based k-coverage configuration is said to be connected if the 
radii of sensing and communication ranges of the sensors, �� and �5 , respectively, obey the inequality: �5 ≥ 2�� 

B. Stochastic Sensing Model 

Definition 1 (Stochastic k-coverage): A point P in FoI is said to 
be probabilistically k-covered if the probability of detection of 
an event occurring at P by at least k sensors is at least equal to 
certain threshold probability pth, where 0 < pth < 1. 

Theorem 3 (Minimum k-coverage probability): The minimum 
required probability of detection for k-coverage using our 
stochastic sensing model is given by 

�789 = 1 − ;1 − 	
�%<�='
 

where rs is the sensing radius of sensor.  

Proof: In order to compute pmin, we identify the the least 
possibly k-covered point in a FoI. From Theorem 1, we deploy 
k sensors in the cusp square area to achieve k-coverage. We can 
clearly observe that point A is the least possibly k-covered if all 
the k sensors are deployed on the arc FG of the cusp square area. 
Also, point A is the farthest and equidistant point from the arc 
FG, and the distance is exactly rs. Thus, the minimum required 
probability of detection pmin for the least possible k-covered 
point A, using our stochastic sensing model, is given by, 

�789 = 1 − >(1 − �(�, �8))
'

8?@
= 1 − ;1 − 	
�%<�='

 

In order to solve the stochastic k-coverage problem, we have 
to select a minimum subset Smin of sensors, where A789 ⊆ A, 
such that every point in a FoI is probabilistically k-covered by at 
least k sensors with probability of detection is at least equal to 
pth. This allows us to compute the minimum stochastic sensing 
radius rs

* that allows us to achieve stochastic k-coverage of a FoI 
with probability no less than pth. 

Lemma 3 (Stochastic Sensing Radius): The minimum stochastic 
sensing radius rs

* that is required to achieve stochastic k-
coverage of a FoI is computed as follows: 

��∗ = D− 1E  FG H1 − (1 − ��I)@ 'J KL
@ "J

 

Proof: From Definition 1 and Theorem 3, we have, 

�789 ≤ ��I 

⟹ �� ≤ D− 1E  FG H1 − (1 − ��I)@ 'J KL
@ "J

 

Thus, the minimum stochastic sensing radius rs
* is given by: 

��∗ = D− 1E  FG H1 − (1 − ��I)@ 'J KL
@ "J

 

Theorem 4 (Stochastic Planar Sensor Density): The stochastic 
planar sensor density λ*(k, rs), which is required to k-cover a 
field of interest, is computed as follows: 

0∗(1, ��) = 0.7341(��∗)/  

Lemma 4 (Stochastic Network Connectivity): A Square 
tessellation-based k-coverage configuration is said to be 
connected if the stochastic communication radius rc

* and 
stochastic sensing radius rc

*, obey the inequality: �5 ∗ ≥ 2��∗ 

C. Stochastic k-Coverage Protocol 

In the resulting stochastic k-coverage protocol, denoted by 
St-k-CSqu, we used the same sensor selection and scheduling 
strategies to minimize the sensors’ energy consumption during 
the k-coverage process, thus, maximizing the network lifetime. 

V. PERFORMANCE EVALUATION 

In this section, we present the simulation results of our 
stochastic k-coverage protocol St-k-CSqu, using an open source 
high-level simulator [21] built using C and Python languages. 

Fig. 3 shows the variation of stochastic planar sensor density 
λ* (based on Theorem 4) with changing degree of coverage k for 
path loss exponent α = 2 and α = 4. We observe that λ* increases 
with increase in k for constant α. Also, it is clear that for higher 
threshold probability pth values, higher the λ* to attain same level 
of k for constant α. For α = 2, there is a slight deviation from 
expected behavior of λ* versus k, while for α = 4, the behavior 
of λ* versus k is as expected, i.e., λ* is directly proportional to k. 
Fig. 4 shows the variation of degree of coverage k with regard 
to the number of active sensors na for our stochastic protocol for 
path loss exponent α = 2 and α = 4. We can clearly observe that 
a higher level of k is achieved using higher values of na. 
Similarly, number of active sensors na required for stochastic k-
coverage process increases with increasing pth and α values for 
achieving specific level of k. These experimental results shows 
a good match between theory and simulations. The plots in Fig. 
5 consider different values of threshold probability pth and path 
loss exponent α, with constant degree of coverage k = 3. They 
illustrate the behavior of the number of active sensors na 
required for stochastic k-coverage process with respect to the 
physical characteristics of sensor’s sensing unit β (section II.B). 
From the plots, it is evident that na required increases with 
increase in β. Fig. 6 shown below compares the performance of 
our protocol St-k-CSqu with protocols SCPk [5] and RCHk [8]. 
It is clear that our protocol has higher operational network 
lifetime compared to other protocols for similar experimental 
conditions. 
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Fig. 3. Planar sensor density λ* versus degree of coverage k 

Fig. 4. Degree of coverage k versus number of active sensors na 

  
Fig. 5. Number of active sensors na versus β 

  
Fig. 6. Remaining energy versus time (indicating operational network lifetime). 

VI. CONCLUSION 

In this paper, we investigated the stochastic connected k-
coverage problem in PWSNs using square tessellation-based 
approach. We proposed a stochastic protocol St-k-CSqu, which 
is an updated version of our k-CSqu protocol [20]. Our future 
work is three-fold. First, we plan to extend our square 
tessellation-based theory to heterogeneous sensors, where 
sensors may have different characteristics. Second, we want to 
extend our approach for solving stochastic connected k-coverage 
problem in three dimensional WSNs. Finally, we will be placing 
our protocols into practice using a real-world sensor-testbed. 
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