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Abstract

Indistinguishability is a fundamental principle of cryptographic security, crucial for se-

curing data transmitted between Internet of Things (IoT) devices. This principle ensures

that an attacker cannot distinguish between the encrypted data, also known as cipher-

text, and random data or the ciphertexts of two messages encrypted with the same key.

This research investigates the ability of machine learning (ML) to assess the indistin-

guishability property in encryption systems, with a focus on lightweight ciphers. As

our first case study, we consider the SPECK32/64 and SIMON32/64 lightweight block

ciphers, designed for IoT devices operating under significant energy constraints. In this re-

search, we introduce MIND-Crypt (a Machine-learning-based framework for assessing the

INDistinguishability of Cryptographic algorithms), a novel ML-based framework designed

to assess the cryptographic indistinguishability of lightweight block ciphers, specifically

the SPECK32/64 and SIMON32/64 encryption algorithms in CBC, CFB, OFB, and CTR

modes, under Known Plaintext Attacks (KPAs). Our approach involves training ML models

using ciphertexts from two plaintext messages encrypted with the same key to determine

whether ML algorithms can identify meaningful cryptographic patterns or leakage. Our

experiments show that modern ML techniques consistently achieve accuracy equivalent to

random guessing, indicating that no statistically exploitable patterns exist in the ciphertexts

generated by the considered lightweight block ciphers. Although some models exhibit

mode-dependent bias (e.g., collapsing to a single-class prediction in CBC and CFB), their

overall accuracy remains at random guessing levels, reinforcing that no meaningful distin-

guishing patterns are learned. Furthermore, we demonstrate that, when ML algorithms

are trained on all possible combinations of ciphertexts for given plaintext messages, their

behavior reflects memorization rather than generalization to unseen ciphertexts. Collec-

tively, these findings suggest that existing block ciphers have secure cryptographic designs

against ML-based indistinguishability assessments, reinforcing their security even under

round-reduced conditions.

Keywords: lightweight block ciphers; cryptanalysis; deep learning

1. Introduction

Indistinguishability is the basis for building secure encryption systems. Concretely,

indistinguishability means that the adversary cannot tell the difference between the cipher-
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texts corresponding to two plaintexts with a probability significantly better than 0.50. It is

an important notion underlying encryption security since it implies that the adversaries

are unable to decipher any useful information about the plaintext given the ciphertext.

Moreover, a broken indistinguishability property exposes deterministic or predictable

patterns in the encryption process, making the system susceptible to more effective attacks,

such as ciphertext-only attacks where the plaintext is deciphered without the key. This not

only undermines the trust and reliability of the cryptographic system but also paves the

way for practical decryption techniques that could exploit this predictability. Therefore,

preserving indistinguishability is essential to maintain the overall integrity and security of

encryption schemes.

Lightweight Block Ciphers. The Internet of Things (IoT) exemplifies a domain where

cryptography’s vital role is particularly pronounced, due to its explosive growth and the

evolving capabilities of connected devices. With projections estimating about 40 billion

devices connected by 2030 [1–4], the diversity of applications—from smart home devices

enhancing residential convenience and security to advanced systems in healthcare moni-

toring and industrial IoT (IIoT)—is transforming traditional industries. However, many

IoT devices operate under constraints of processing power and memory, necessitating

cryptographic solutions that optimize security without imposing significant computational

burdens. Among lightweight block ciphers, the SPECK32/64 and SIMON32/64 ciphers,

designed by the National Security Agency, stand out for their operational efficiency and

simplicity, tailored specifically to meet the needs of these resource-constrained environ-

ments [5–7].

Cryptanalysis and Machine Learning. As cryptographic systems evolve in complex-

ity and sophistication, so too does cryptanalysis—the study and practice of deciphering

codes, ciphers, and encrypted messages without the use of actual key. This discipline

has seen significant advancements through a variety of techniques, reflecting the ongo-

ing arms race between cryptography and cryptanalysis. Traditional methods such as

side-channel attacks [8–11], fault injection attacks [12–15], mathematical analysis [16–18],

and brute-force attacks [19–22] have continually been refined in tandem with advance-

ments in cryptographic techniques. However, as cryptographic algorithms become more

complex, the effectiveness of these traditional approaches is increasingly challenged, neces-

sitating newer methodologies. This evolving landscape has sparked considerable interest

in integrating machine learning with cryptanalysis, offering novel approaches to breaking

cryptographic systems and presenting new challenges to their robustness.

In 2019, Gohr [23] proposed a differential attack on round-reduced SPECK32/64,

focusing on the development of neural distinguishers that could effectively distinguish

ciphertexts differing by a specific difference delta from random text. This approach lever-

aged deep learning (DL), specifically deep residual neural networks, which demonstrated

superior performance compared to traditional cryptographic distinguishers. Further en-

hancing the practicality of his method, Gohr integrated a novel key search policy based

on Bayesian optimization, significantly improving the efficiency of key recovery processes.

Following Gohr’s work, Benamira et al. [24] conducted detailed analysis and showed

neural distinguisher developed by Gohr generally relies on the differential distribution on

the ciphertext pairs but also on the differential distribution in penultimate and antepenulti-

mate rounds. This approach not only showcased DL’s potential in enhancing traditional

cryptanalysis but also emphasizes the need to probe deeper into the cipher’s behavior by

exploring the notion of indistinguishability. Unlike prior research focused primarily on

differential cryptanalysis, our approach uniquely targets indistinguishability—an essential

property underpinning robust encryption—and systematically assesses it against advanced

machine learning methods.
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Our research investigates the potential of ML techniques to assess the indistinguisha-

bility of lightweight block ciphers, specifically SPECK32/64 and SIMON32/64 under

CBC, CFB, OFB, and CTR modes of operation. Compromising indistinguishability

renders the cipher fundamentally insecure. This process involves training a deep

learning model on ciphertexts from two distinct messages, P1 and P2, and aims to

determine if a challenge ciphertext belongs to message P1 or P2.

Focus of Our Research. In contrast to Gohr [23], our research shifts the focus from dif-

ferential attack strategies to the broader concept of indistinguishability within lightweight

block ciphers (e.g., SPECK32/64 and SIMON32/64). Unlike Gohr’s approach, which targets

specific, known differential paths for key recovery, our study employs ML to assess whether

a model can distinguish between ciphertexts of two plaintext messages encrypted using

the same key. Our analysis demonstrates that achieving a generalized ML-based indis-

tinguishability is fundamentally more challenging than exploiting predefined differential

characteristics. Consequently, our results highlight that existing lightweight block ciphers

remain robust, as current ML methods fail to compromise their indistinguishability.

To illustrate the practical implications of our research, consider a scenario involv-

ing a smart home security system that utilizes the SPECK32/64 or SIMON32/64 cipher

to encrypt data from sensors such as motion detectors and window sensors. If indistin-

guishability were compromised, an adversary might differentiate encrypted sensor signals,

distinguishing, for instance, whether ciphertext originates from motion sensors detecting

indoor movement or window sensors detecting window openings. Such an ability would

pose severe privacy risks, enabling unauthorized parties to infer sensitive patterns (e.g.,

movements), without explicitly decrypting the messages.

Formally, in our study, we address the following research question: Can ML techniques

compromise the indistinguishability property of lightweight block ciphers? Our findings provide

strong evidence that current lightweight block cipher implementations are secure against

ML-based indistinguishability assessments.

When designing MIND-Crypt, we considered assumptions typical of the Known

Plaintext Attack (KPA) scenario, where the attacker has access to both plaintexts and their

corresponding ciphertexts encrypted under the same key. Here, the primary focus of an

attacker is to identify if the challenge ciphertext belongs to message P1 or P2, thus testing

the fundamental indistinguishability of the considered encryption schemes. Our objective

is not to demonstrate vulnerability but to investigate whether subtle leakages might be

exploited by ML. We study both its standard configuration and round-reduced versions to

understand if these variations affect resistance to ML.

Our Methodology and Experiments. We approach this challenge by framing the

task as a binary classification problem, where the ML classifier is trained on previously

known ciphertexts C1 and C2 corresponding to two fixed plaintexts P1 and P2, respectively,

and using the trained model to predict whether any new challenge ciphertexts correspond

to P1 or P2. To train the model, the attacker generates ciphertexts of these messages by

encrypting them under the same key.

Our experiments show that the performance of the ML models remains consistently

around random guessing levels (≈50%). These findings suggest that ML models are

unable to extract meaningful patterns from ciphertexts produced by lightweight encryption

schemes. Consequently, our results emphasize that ML techniques, despite their advanced

capabilities, cannot challenge the indistinguishability property cryptographic algorithms.

Our Contributions and Summary of Results. The main contributions and findings

are summarized as follows:

https://doi.org/10.3390/cryptography10010009
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1. A Novel Machine Learning Framework: We designed MIND-Crypt, a novel machine-

learning-based framework that utilized ML techniques to investigate the indistin-

guishability of lightweight block ciphers. More specifically, we leverage DL to imple-

ment MIND-Crypt.

2. Comprehensive Evaluation of Cryptographic Indistinguishability: We evaluate

the cryptographic indistinguishability of SPECK32/64 and SIMON32/64 across four

widely used block cipher modes of operation (CBC, CFB, OFB, and CTR) using multi-

ple state-of-the-art DL architectures. Our experiments demonstrate that all evaluated

ML models consistently achieve accuracies equivalent to random guessing (≈50%),

clearly indicating their inability to detect meaningful cryptographic leakage or statisti-

cal patterns.

3. Analysis of Memorization vs. Generalization: We provide a detailed analysis dis-

tinguishing memorization from generalization in DL model predictions, leveraging

reduced-entropy datasets specifically designed to study memorization effects.

4. Security Assurance for IoT Devices: Our results provides practical assurance, demon-

strating that lightweight block ciphers such as SPECK32/64 and SIMON32/64 are

secure against ML-based indistinguishability attacks in realistic, resource-constrained

IoT environments.

This article is an extended version of our conference paper presented at the 21st

Annual International Conference on Privacy, Security and Trust (PST 2025) [25], where

we introduced the MIND-Crypt framework and evaluated it only for the CBC mode of

operation. A detailed summary of the extensions in this journal version is provided in

Appendix B.

Reproducibility. Our code is publicly available [26].

2. Background and Preliminaries

In this section, we provide important context in the form of basic background on block

cipher SPECK32/64, Residual Neural Networks, and Transfer Learning.

2.1. Lightweight Block Ciphers

A block cipher is a deterministic permutation that operates on fixed size blocks of

data. Since plaintexts are typically longer than a single block and semantic security is

required, block ciphers are used in conjunction with modes of operation. A mode of

operation specifies how encryption is applied across multiple blocks and how randomness

is incorporated to prevent information leakage. In this work, we consider four widely

deployed block cipher modes: Cipher Block Chaining (CBC), Cipher Feedback (CFB),

Output Feedback (OFB), and Counter (CTR) for SPECK32/64 and SIMON32/64 lightweight

block ciphers.

2.1.1. SPECK32/64 Block Cipher

SPECK is a family of lightweight block ciphers, denoted as SPECKM/N, where M and

N are block size and key size, respectively, in bits, developed by Beaulieu, Treatman-Clark,

Shors, Weeks, Smith, and Wingers [27] for NSA. It is an add-rotate-xor (ARX) cipher with

operations like modular addition (mod 2k) ⊞, bitwise addition ⊕, and bitwise rotation

(left ≪ and right ≫) applied on k-bit words, aimed to build efficient cipher for software

implementations in IoT devices [7]. The round function of SPECK F : F2k
2 × F

2k
2 → F

2k
2

computes the next round state (Li+1, Ri+1) using a k-bit subkey K and current round state

(Li, Ri) as Li+1 = ((Li ≫ α) ⊞ Ri) ⊕ K and Ri+1 = (Ri ≪ β) ⊕ Li+1. Here, α and β

are rotation constants (α = 7, β = 2 for SPECK32/64 and α = 8, β = 3 for remaining).

The ciphertext is produced from the input plaintext by employing this round function for a
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fixed number of times (22 rounds for SPECK32/64). Further, the design of SPECK32/64

balances security with minimal computation overhead, making it an ideal candidate for

studying indistinguishability in resource-constrained IoT devices [6,7].

2.1.2. SIMON32/64 Block Cipher

SIMON is a family of lightweight block ciphers, denoted as SIMONM/N, where M

represents the block size in bits, and N denotes the key size in bits. SIMON was designed by

Beaulieu, Shors, Smith, Treatman-Clark, Weeks, and Wingers for the NSA [27], specifically

optimized for efficient implementation in hardware-constrained environments, such as

embedded systems [7]. SIMON employs a balanced Feistel network structure, particularly

suited for hardware efficiency due to its simplicity, minimal gate count, and compact

area utilization.

For SIMON32/64, the cipher employs a word size of 16 bits (thus a 32-bit block

size) and a 64-bit key. The SIMON32/64 variant uses 32 rounds of encryption, providing

adequate security for resource-constrained devices. The minimalistic and serialized design

makes it highly suitable for hardware implementations where area minimization and power

efficiency are critical, such as embedded IoT platforms [6,7].

3. Threat Model and Assumptions

Our study investigates the security of the SPECK32/64 and SIMON32/64 lightweight

block ciphers. We consider a known plaintext passive adversary model on block ciphers

instantiated with four modes of operation: CBC, CFB, OFB, and CTR. We primarily focus

on an attacker’s ability to distinguish between the ciphertexts of two different messages

encrypted using the same key. This is particularly relevant for IoT devices that operate

under significant energy constraints and require efficient and lightweight cryptographic

solutions like the SPECK32/64 or SIMON32/64 cipher.

In our attack model, we consider a passive attack scenario where the attacker observes

multiple ciphertexts, all encrypted with the same key, without performing active attacks

such as Chosen-Ciphertext Attacks (CCA). To illustrate the practical implications of vio-

lating indistinguishability (briefly noted in Section 1) in cryptographic systems, consider

a smart home security system that uses the SPECK32/64 or SIMON32/64 lightweight

block cipher to encrypt data from various constrained IoT sensors around the house. These

sensors—including motion detectors, cameras, and window sensors—regularly send en-

crypted data to a central monitoring system. Adopting a passive attack scenario enhances

the practical relevance of our assessment, as it represents a realistic threat where attack-

ers merely observe ciphertexts without active manipulations, commonly encountered in

practical IoT security environments.

Mathematically, we denote the plaintext by P , the ciphertext by C, and the secret key

by K. The encryption function EK uses the key K to transform plaintext into ciphertext.

A cipher maintains indistinguishability if no polynomial-time adversary can distinguish

between the ciphertexts of two different plaintexts encrypted with the same key with a

probability significantly better than 0.5.

The attacker selects two different fixed plaintexts, P1 and P2 (e.g., “heat” or “cool”

commands that adjusts the temperature using thermostat), which are encrypted using the

same secret key K, resulting in ciphertexts C1 and C2. Subsequently, the attacker employs

a DL model, trained with multiple instances of ciphertexts C1 and C2. This model is then

utilized to classify new challenge ciphertexts, determining whether they correspond to P1

or P2, potentially breaching the indistinguishability property of the encryption scheme.

Our model extends these concepts by allowing the attacker to simulate data generation

without direct access, avoiding the active manipulation typical of CCA. The attacker aims

https://doi.org/10.3390/cryptography10010009
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to identify patterns, anomalies, or relationships in the ciphertexts that differentiate those

corresponding to two distinct, same-byte-length plaintexts. Successfully differentiating

ciphertexts beyond chance agreement signifies vulnerabilities in the block cipher, whereas

failure to do so would validate the cipher’s robustness under passive attack settings.

4. MIND-Crypt: Design and Methodology

In this section, we introduce MIND-Crypt, a machine-learning-based assessment

framework designed to evaluate the cryptographic indistinguishability of lightweight

block ciphers, specifically SPECK32/64 and SIMON32/64, operating in CBC, CFB, OFB,

and CTR modes.

4.1. Framework Design

Our primary objective is to investigate whether ML algorithms can identify statistically

meaningful patterns or cryptographic leakage in ciphertexts generated by these lightweight

block ciphers. DL models have demonstrated significant promise for solving complex

classification problems in cybersecurity, such as malware detection, intrusion detection,

and traffic classification. In this study, we utilized multiple DL architectures, namely, Con-

volution Neural Networks [28] (CNNs), Long-Short Term Memory (LSTM) [29] networks,

Bidirectional LSTM (BiLSTM) [30] networks, and Residual Neural Networks (ResNets) [23],

to comprehensively evaluate cryptographic indistinguishability of lightweight block ci-

phers. The details of these DL architectures are as follows:

4.1.1. Convolutional Neural Networks (CNNs)

CNNs, introduced by LeCun et al. [28], can effectively extract hierarchical spatial

features from input data via convolutional layers. CNNs leverage multiple convolutional

layers to automatically identify hierarchical patterns within the input data, which reduces

the reliance on manual feature extraction. Although CNNs have historically been applied

extensively in image recognition tasks, their capability to capture subtle local statistical

dependencies also makes them well suited for security research. CNNs are highly effective

for classification tasks involving structures, grid-like data. These models have success-

fully improved classification accuracy for security problems such as network intrusion

detection [31] and malware analysis [32].

4.1.2. Long-Short Term Memory (LSTM)

LSTMs were introduced by Hochreiter and Schmidhuber [29] are a type of recurrent

neural network capable of learning sequential dependencies and long-term temporal pat-

terns. LSTM architectures employ specialized gating mechanisms that include input, output

and forget gates to effectively preserve long-range dependencies within sequential data,

addressing the vanishing gradient problem common to traditional RNNs. For ciphertext

indistinguishability assessment, the sequential characteristics of ciphertext bits are critically

important. The intrinsic ability of LSTM networks to capture long-range sequential pat-

terns makes them particularly suitable for analyzing cryptographic ciphertexts generated

through block ciphers.

4.1.3. Bidirectional Long-Short Term Memory (BiLSTM)

BiLSTM network architecture proposed by Graves and Schmidhuber [30] enhances tra-

ditional LSTM architectures by simultaneously processing input sequences in both forward

and backward directions. This bidirectional processing allows BiLSTM networks to lever-

age past and future context at each point in a given sequence, significantly improving their

ability to capture complex dependencies. In cryptographic indistinguishability analysis,

the direction-agnostic nature of BiLSTMs may offer additional sensitivity in detecting sub-
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tle statistical differences across ciphertext sequences, thereby providing a comprehensive

evaluation capability for the presence or absence of cryptographic leakage or patterns.

4.1.4. Residual Neural Networks (ResNets)

He et al. [33] introduced ResNets to address the vanishing gradients problem in

deep neural network (DNN) training by utilizing residual blocks. These blocks, featuring

stacked convolutional layers with skip connections, allow the network to learn residual

functions, focusing on differences rather than complete transformations. ResNets have

been successfully applied in various security applications [34–37].

In cryptanalysis, ResNet models are effective at identifying complex patterns, which

helps with tasks such as automated cipher breaking and differential cryptanalysis. Their

architecture allows for more accurate and efficient prediction of differential characteristics,

enhancing encryption analysis and vulnerability insights. A prominent example is the work

of Gohr et al. [23], who leveraged deep residual neural networks to identify differential

characteristics in round-reduced versions of lightweight block ciphers such as SPECK32/64.

Their findings highlighted that ResNets could surpass traditional cryptanalytic methods

in specific scenarios involving reduced cipher complexity. Adrien et al. [24] discuss how

machine learning, including ResNets, advances cryptanalytic and cyber defense techniques.

4.2. Framework Implementation

Figure 1 illustrates our assessment framework, detailing the entire process from mes-

sage selection and ciphertext generation to ML-based assessment. Initially, two plaintext

messages P1 and P2, each measured in byte length and differing by exactly one bit, are

encrypted multiple times using either SPECK32/64 or SIMON32/64 ciphers under a fixed

encryption key k using CBC, CFB, OFB, and CTR modes. Our DL models are trained for the

binary classification task of separating ciphertexts into two classes: ξ1 and ξ2. To explain, ξ1

includes the ciphertexts of P1, labeled as C1i (C1i = Enck(P1)), where i ∈ {1, 2, . . . , n}. Sim-

ilarly, ξ2 includes the ciphertexts of P2, labeled as C2i (C2i = Enck(P2)) for i ∈ {1, 2, . . . , n}.

It should be noted that the Initialization Vectors (IVs) are used only as a part of encryp-

tion process and not included in the training data of the DL model. This design choice

ensures that the model learns to identify any intrinsic properties or subtle differences in the

ciphertext generated from P1 and P2, without relying on external factor of the IVs.

Following ciphertext generation, we convert the ciphertexts into binary format, adher-

ing to the data preparation methods described by Gohr et al. [23] for examining differential

attacks on SPECK32/64. Utilizing this methodology, we feed these binary ciphertexts into

a DL model. While Gohr et al. [23] demonstrated the effectiveness of ResNet models in

identifying differential characteristics within ciphertexts, their approach primarily lever-

aged spatial hierarchical features through convolutional residual blocks. To thoroughly

assess cryptographic indistinguishability, we employ diverse DL architectures capable of

capturing different types of patterns or subtle biases within ciphertext data. Specifically, we

selected CNN architectures for their proven efficiency in extracting spatial and local feature

patterns. Additionally, we included LSTM and BiLSTM networks due to their capability to

detect sequential dependencies and temporal correlations that might remain undetected

by purely convolution-based architectures. The combination of spatial (CNN), sequential

(LSTM/BiLSTM), and hierarchical (ResNet) learning mechanisms ensures a robust, multi-

dimensional analysis, providing comprehensive insights into security of lightweight block

ciphers against varied ML-based cryptanalytic approaches. Each DL model in our frame-

work is trained for binary classification to distinguish ciphertexts derived from plaintexts

P1 and P2.

https://doi.org/10.3390/cryptography10010009
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32-bit plaintext messages

P
1
: 0000 0000 … 0000 

P
2
: 0000 0000 … 0001

SPECK32/64 or SIMON32/64 

to encryption P
1 

& P
2

key K
i

Encryption using 

Lightweight Block Ciphers

Dataset Preparation

Training, Validation, and 

Testing datasets; Reduced 

(16-bits) and Full Entropy 

(32-bits)

Tuning & Training Deep 

Learning Models

e.g., CNN, LSTM, Bi-

LSTM, and ResNet

Performance Evaluation

Accuracy, TPR, and TNR 

evaluation of trained DL 

models on Challenge 

Ciphertext.

CBC Mode

CFB Mode

OFB Mode

CTR Mode

Ciphertext Generation

Figure 1. The MIND-Crypt assessment framework—investigating the indistinguishability of

SPECK32/64 and SIMON32/64 lightweight block ciphers across four modes of operation (CBC,

CFB, OFB, and CTR). Two plaintext messages encrypted under the same key are processed through

each mode, generating ciphertext datasets used to train and evaluate deep learning models.

Finally, the trained ML models are evaluated on unseen challenge ciphertext sam-

ples. By analyzing model predictions and systematically comparing their performance

against a random guessing baseline (≈50% accuracy), we provide empirical insights into

whether state-of-the-art ML techniques can uncover meaningful cryptographic vulnera-

bilities. Rather than demonstrating exploitable weakness, our comprehensive assessment

highlight the robustness of lightweight block cipher designs against ML-based indistin-

guishability attacks.

5. Assessing Lightweight Block Ciphers Using MIND-Crypt

In this section, we describe how our proposed MIND-Crypt framework can be utilized

for assessing lightweight block ciphers. We describe the datasets, experiment settings,

and evaluation metric considered for assessing our framework.

5.1. Description of the Dataset

In our study, we evaluated the effectiveness of the MIND-Crypt by utilizing a pub-

licly available implementation of SPECK32/64 provided by Gohr [23] and SIMON32/64

implementation [38].

For the CBC mode of SPECK32/64, we retained a modified version of Gohr’s original

implementation. This choice was made to preserve direct experimental comparability with

Gohr’s prior results. Maintaining this implementation for CBC of SPECK32/64 ensures

that any observed differences between the original work and our extended evaluation can

be attributed to the learning framework and experimental design rather than to software

level discrepancies.

To this end, we made several modifications to the original SPECK32/64 implementa-

tion provided in [23]:

1. Encryption Mode: We shifted from the Electronic Code Book (ECB) mode used in

Gohr’s original code to CBC mode. This change involved encrypting the messages

using CBC mode with randomly generated initialization vectors (IVs).

2. Key Usage: Unlike the original implementation that used varying keys, we utilized a

single, fixed key securely generated using Gohr’s methodology. This consistency was

vital for comparing the indistinguishability of outputs. This approach allowed us to

isolate the impact of message variation on ciphertext indistinguishability without key

variability influencing the results.

https://doi.org/10.3390/cryptography10010009
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3. Generating IVs: We employed the frombuffer module in NumPy library in conjunc-

tion with Python’s os.urandom to generate cryptographically secure IVs, mirroring

Gohr’s method.

4. Correctness: To ensure the correctness of our modifications, we decrypted the ci-

phertexts to verify that they reverted accurately to the original plaintexts, labeled ‘0’

and ‘1’.

5. Message Selection: We chose two specific messages of identical 32-bit length, differing

by only a single bit at the binary level, labeled ‘0’ and ‘1’. This allowed us to directly

assess the effect of minimal input variation on the encryption output.

Importantly, both implementations realize the same algorithmic specification of

SPECK32/64 and differ only in software structure and experimental interfacing. The round

functions, key schedules, and encryption operations are identical. Consequently, the use of

two implementations does not introduce cryptographic bias and does not affect the validity

of the indistinguishability evaluation.

Additionally, to distinguish between memorization and generalization behaviors

exhibited by ML models, we conducted a proof-of-concept evaluation using a simplified

cryptographic setup. Specifically, we intentionally reduced the entropy in the SPECK32/64

encryption algorithm from the standard 32 bits to 16 bits. This reduction created an

artificially weakened cryptographic scenario, significantly decreasing the complexity and

thereby increasing the potential for identifiable statistical patterns. We emphasize that this

simplified experiment was conducted solely for analyzing ML model behaviors regarding

memorization versus genuine generalization and was not intended as a realistic assessment of

the cipher’s actual indistinguishability or security under standard cryptographic conditions.

For exploring indistinguishability using DL, we collected 107 training samples,

106 samples each for validation and testing across ‘R’ rounds of encryption schemes.

Each dataset segment maintained an equal number of samples from two classes, represent-

ing ciphertexts of two distinct plaintext messages encrypted with the same key. The training

data was used to train a DL model, while the testing data was utilized to evaluate the

performance of the trained model on an unseen dataset. This allowed the DL model to

detect subtle differences in ciphertexts of the selected messages. To facilitate the learning

process, the ciphertexts were represented as 32-bit binary vectors, providing a consistent

input format for the DL.

5.2. Experiment Settings

The implementation of the MIND-Crypt was conducted using the Python v3.9 pro-

gramming language, leveraging the open-source library TensorFlow [39] for the develop-

ment, training, and evaluation of the DL model. To optimize the neural network’s hyper-

parameters, we employed Optuna [40], a software framework designed for efficient and

automatic hyperparameter optimization. Specifically, we utilized Optuna’s TPESampler,

which implements the Tree-structured Parzen Estimator (TPE) algorithm—a Bayesian

optimization approach that models the objective function using two separate densities to ef-

ficiently navigate the hyperparameter search space [41]. The hyperparameter search process

was configured to execute up to 100 trials or terminate if the search duration exceeded 200 h

for each combination of cipher, mode, and DL architecture. Specifically, hyperparameter op-

timization was performed independently for SPECK32/64 and SIMON32/64, across all four

modes of operation (CBC, CFB, OFB, and CTR), and for each of the four DL architectures

(ResNet, CNN, LSTM, and BiLSTM), resulting in comprehensive model tuning tailored

to each experimental configuration. The search space for the hyperparameters is detailed

Tables 1 and 2.
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Table 1. Model-specific hyperparameter search space.

Hyperparameter
LSTM-Based Models (LSTM
and BiLSTM)

CNN-Based Model (1D
CNN)

No. of LSTM Layers {2, 3, 4, 5, 6, 7, 8, 9} –
LSTM Cells in Each Layer {200, 300, 400, 500} –
No. of Convolution Layers – {2, 3, 4, 5, 6, 7, 8, 9}
No. of Filters – {2, 4, 8, 16, 32, 64, 128, 256}

Kernel Size –
{2, 3, 4, 5, 7, 9, 11, 13, 15, 17,
19, 21}

Convolution Stride Size –
{2, 3, 4, 5, 7, 9, 11, 13, 15, 17,
19, 21}

Pool Size – {1, 2, 3, 4}
Pool Stride Size – {2, 3, 4}

Table 2. Common hyperparameter search space across all models.

Hyperparameter Search Space

decay {0.05, 0.1, 0.2, 0.3}
Dropout Rate {0.05, 0.1, 0.2, 0.3, 0.4}
Activation Function {Softsign, ELU, Selu, ReLU, Tanh}
No. of Dense Layers {1, 2, 3, 4, 5, 6, 7, 8, 9}
No. of Neurons in FC Layer {256, 512, 1024, 2048, 4096}
Activation Function in FC Layer {Softsign, ELU, Selu, ReLU, Tanh}
Dropout Rate FC {0.05, 0.1, 0.2, 0.3, 0.4}
optimizer {RMSprop, Adagrad, Adam, Adamax, Nadam, SGD}
Epochs {100, 200, 300}
Batch Size {256, 512, 1024}
Learning Rate [0.00001, 0.01] (log scale)

DL Model Training for Indistinguishability Assessment. To study cryptographic

indistinguishability of ciphertexts, we implemented and trained four distinct DL architec-

tures: ResNets [23], CNN, LSTM, and BiLSTM networks. The ResNet architecture developed

by Gohr was specifically selected due to its success in identifying differential characteristics in

reduced-round versions of SPECK32/64 cipher. We adapted Gohr’s ResNet model for our binary

classification task. This adaptation aimed to assess whether ML could effectively distinguish

ciphertexts generated from two distinct plaintexts, P1 and P2, encrypted using same key.

We extended the assessment to include CNN, LSTM, and BiLSTM architectures, com-

monly employed in image and sequence processing. These models were adapted to process

ciphertext data by converting inputs into binary vector representations, facilitating sequen-

tial (LSTM/BiLSTM) or spatial (CNN) feature extraction. This methodology ensured a

comparative analysis of DL architectures in the context of ciphertext indistinguishability.

Detailed architectural specifications and hyperparameter settings for the ResNet model are

available in Gohr [23].

5.3. Evaluation Metrics

To evaluate the efficacy of the MIND-Crypt across different settings, we performed

a comprehensive assessment using a DL model to classify ciphertexts into two distinct

classes, ξ1 and ξ2. This evaluation employs three key metrics: Accuracy, True Positive Rate

(TPR), and True Negative Rate (TNR), similar to the metrics considered in studies by [23,24] that

explore differential attacks in the SPECK32/64 encryption scheme. Furthermore, accuracy, TPR,

and TNR were specifically chosen because they collectively provide clear insights into model

biases, detection capabilities, and overall effectiveness in distinguishing ciphertext classes.

Accuracy gauges the model’s overall effectiveness at correctly classifying ciphertexts

belonging to class ξ1 or ξ2. We calculate accuracy as the proportion of correct classifi-
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cation—both true positives and true negatives—out of the total ciphertexts examined.

A higher accuracy value reflects superior model performance in discriminating accurately

between ciphertexts associated with classes ξ1 and ξ2.

The True Positive Rate (TPR), also known as Recall or Sensitivity, measures the pro-

portion of ciphertext samples that truly belong to the class ξ1. In our experiments, a higher

TPR indicates that the classifier more consistently identifies ciphertext from ξ1, reducing

false negatives and improving the reliability of the empirical distinguishers.

The True Negative Rate (TNR), or Specificity, evaluates the model’s accuracy in classi-

fying ciphertexts into class ξ2 when they do not belong to class ξ1. This measure is essential

for ensuring the model effectively identifies ciphertexts that do not adhere to the charac-

teristics of class ξ1, thus preventing false positives. A high TNR underscores the model’s

reliability in excluding non-conforming encryption outputs, pivotal for upholding robust

cryptographic defenses.

In addition to these key metrics, we also provided detailed analysis using Precision,

Recall, F1-Score, Receiver Operating Characteristic Area Under the Curve (ROC-AUC),

False Negative Rate (FNR), and False Positive Rate (FPR) in Appendix A.

6. Results

We evaluated the cryptographic indistinguishability of the SPECK32/64 and SI-

MON32/64 lightweight block ciphers using four DL architectures: ResNet, CNN, LSTM,

and BiLSTM. Experiments were performed under both round-reduced (five-round) and

standard full-round configurations. In addition, four modes of operation were examined:

CBC, CFB, OFB, and CTR. The resulting classification performance for all combinations is

summarized in Tables 3 and 4.

Table 3. Indistinguishability assessment for SPECK32/64 and SIMON32/64 in round-reduced

(5-round) configuration using MIND-Crypt.

CBC and CFB

CBC CFB
Cipher DL Model Accuracy TPR TNR Accuracy TPR TNR

SPECK32/64

ResNet 0.5000 0.0000 1.0000 0.5003 0.0355 0.9650
CNN 0.5003 0.0355 0.9650 0.4998 0.0434 0.9562
LSTM 0.5000 0.0000 1.0000 0.5000 0.0000 1.0000
BiLSTM 0.5000 0.0000 1.0000 0.5000 0.0000 1.0000

SIMON32/64

ResNet 0.5002 0.4947 0.5057 0.5000 0.0000 1.0000
CNN 0.4993 0.2235 0.7750 0.4998 0.0470 0.9526
LSTM 0.5000 0.0008 0.9991 0.5000 0.0000 1.0000
BiLSTM 0.5000 0.0000 1.0000 0.4999 0.4481 0.5518

OFB and CTR

OFB CTR
Cipher DL Model Accuracy TPR TNR Accuracy TPR TNR

SPECK32/64

ResNet 0.5000 0.4999 0.5000 0.4993 0.2235 0.7750
CNN 0.5001 0.8012 0.1990 0.5005 0.2062 0.7948
LSTM 0.5000 0.0000 1.0000 0.5000 0.0002 0.9998
BiLSTM 0.4997 0.0806 0.9188 0.5000 0.9997 0.0003

SIMON32/64

ResNet 0.5053 0.9991 0.0017 0.4993 0.2235 0.7750
CNN 0.5000 0.0000 1.0000 0.5000 0.0612 0.9388
LSTM 0.5000 0.0000 1.0000 0.5000 0.0000 1.0000
BiLSTM 0.4997 0.0806 0.9188 0.5000 0.0000 1.0000
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Across all ciphers, modes, and DL architectures, the experimental results show that

classification accuracy remains clustered around random guessing (50%). These results

indicate that the ciphertexts produced by the evaluated encryption schemes do not reveal

structural features or distinguishing patterns that can be exploited by the DL models.

Table 4. Indistinguishability assessment for SPECK32/64 and SIMON32/64 in standard configuration

using MIND-Crypt.

CBC and CFB

CBC CFB
Cipher DL Model Accuracy TPR TNR Accuracy TPR TNR

SPECK32/64

ResNet 0.5000 1.0000 0.0000 0.4997 0.9489 0.0505
CNN 0.4997 0.9489 0.0505 0.5002 0.0826 0.9178
LSTM 0.5000 0.0000 1.0000 0.5000 0.0000 1.0000
BiLSTM 0.4999 0.0000 0.9999 0.4999 0.0167 0.9831

SIMON32/64

ResNet 0.5000 1.0000 0.0000 0.4999 0.0720 0.9278
CNN 0.4999 0.0720 0.9278 0.4999 0.7994 0.2003
LSTM 0.5000 0.4999 0.5000 0.5000 0.0000 1.0000
BiLSTM 0.5000 0.9996 0.0004 0.5001 0.9765 0.0237

OFB and CTR

OFB CTR
Cipher DL Model Accuracy TPR TNR Accuracy TPR TNR

SPECK32/64

ResNet 0.5000 0.0000 1.0000 0.5000 0.9996 0.0004
CNN 0.5002 0.9297 0.0707 0.5002 0.8517 0.1487
LSTM 0.5000 0.0000 1.0000 0.5000 0.0002 0.9998
BiLSTM 0.5000 0.0258 0.9741 0.4999 0.9987 0.0012

SIMON32/64

ResNet 0.5000 0.4999 0.5000 0.5002 0.4947 0.5057
CNN 0.4999 0.9949 0.0049 0.4997 0.9413 0.0581
LSTM 0.5000 0.0000 1.0000 0.5000 0.0000 1.0000
BiLSTM 0.5000 0.0000 1.0000 0.5000 1.0000 0.0000

6.1. Round-Reduced Configuration

In the round-reduced configuration, every combination of cipher, mode, and DL

architecture exhibits behavior consistent with random guessing (Table 3). Accuracies

remain centered around 0.50, while the observed pairs of TPR and TNR are often highly

unbalanced, reflecting model bias rather than meaningful discriminative capability.

For SPECK32/64, this behavior remains consistent across the CBC, CFB, OFB, and CTR

modes. In particular, under CBC and CFB, the ResNet, LSTM, and BiLSTM models yield

TPR near zero and TNR near one, revealing that the models have collapsed to trivial single

class predictions even though their overall accuracy remains close to 0.50. CNN shows

small deviations in CBC and CFB with TPR values around 0.03 to 0.04 and TNR values

around 0.95 to 0.97, but these deviations are too small to suggest significant structure.

Similar behavior appears in OFB and CTR, where accuracy remains at random guessing

levels, and the imbalance between TPR and TNR only reflects changes in prediction bias

rather than improved distinguishability.

For SIMON32/64, the results closely parallel those of SPECK32/64. In all four modes,

overall accuracy remains at 0.50 for every DL model. ResNet produces roughly balanced

TPR and TNR values near 0.5 across CBC, CFB, OFB, and CTR, consistent with purely

random behavior. CNN shows slightly elevated TPR values around 0.22 to 0.25 in CBC

and CFB, but these are offset by TNR values around 0.75 to 0.78, resulting in an accuracy of

0.50. LSTM and BiLSTM again collapse to deterministic predictions with TPR near zero
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and TNR near one or the reverse, maintaining random guessing accuracy. The OFB and

CTR experiments confirm that changing the mode of operation does not provide additional

distinguishing power in the round-reduced setting.

Overall, these round-reduced experiments show that the DL models cannot exploit

the reduced round structure of SPECK32/64 or SIMON32/64 under any mode of operation.

Any increase in TPR is always offset by a corresponding decrease in TNR, resulting in

accuracy near 0.50.

6.2. Standard Configuration

In the standard (full-round) configuration, the DL models continue to show no mean-

ingful distinguishing advantage (Table 4).

For SPECK32/64, the ResNet model achieves an accuracy of approximately 0.50 across

CBC, CFB, OFB, and CTR, but with TPR near one and TNR near zero, meaning that

the model predicts every ciphertext as belonging to the same class. This complete bias

invalidates the appearance of a high TPR as evidence of distinguishing capability. The CNN

model behaves similarly in CBC and CFB, where its TPR is around 0.95 and its TNR is

around 0.05, again yielding an accuracy of 0.50. The LSTM and BiLSTM models display

the complementary bias, with TPR near zero and TNR near one or the reverse, confirming

that they also resort to trivial classification. The OFB and CTR modes do not alter this

pattern: accuracy remains at random guessing levels accompanied by highly skewed TPR

and TNR pairs.

For SIMON32/64, the standard configuration results match those for SPECK32/64.

ResNet yields TPR near one and TNR near zero across all four modes, with accuracy fixed

at 0.50, indicating a systematic preference for a single ciphertext class. CNN shows slightly

higher TNR values than in the SPECK case, approximately 0.93 in several modes, but its

TPR remains low (around 0.07 to 0.08), keeping the accuracy at 0.50. LSTM and BiLSTM

exhibit skew patterns similar to those observed in SPECK32/64 but again never exceed the

accuracy expected from random guessing. As before, switching from CBC to CFB, OFB,

or CTR produces no meaningful improvement.

Overall, these standard configuration experiments confirm that full-round SPECK32/64

and SIMON32/64 remain indistinguishable from random from the perspective of the DL

architectures evaluated.

6.3. Summary of Indistinguishability Results

Across all the evaluated modes of operation (CBC, CFB, OFB, and CTR), no mea-

surable distinguishing advantage is observed for any DL architectures under either the

round-reduced or standard configurations. While certain models exhibit strong prediction

bias towards a single class in specific configuration, such behavior consistently results in

compensating trade-offs between TPR and TNR, confirming such bias does not constitute

meaningful distinguishability. Importantly, no mode yields simultaneous improvement in

both metrics, which is required for a DL model to be a successful distinguisher.

Overall, these results confirm that the choice of mode of operation does not introduce

exploitable statistical structures detectable by modern DL models under KPA settings.

7. Discussions

Our experimental results consistently show that ML models fail to surpass random

guessing when distinguishing ciphertexts produced by lightweight block ciphers. To better

understand these results, we conducted detailed analysis exploring whether models gen-

uinely learn cryptographic patterns or merely memorize overlapping ciphertext samples.
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Analysis of Memorization vs. Generalization: Why ML models Fail to Identify

Patterns. Lightweight block ciphers such as SPECK32/64 and SIMON32/64 generate 32-bit

ciphertexts, producing approximately 232 (over 4 billion) possible ciphertext outputs for a

given plaintext message under full entropy conditions. Exhaustively analyzing such an

enormous dataset to detect cryptographic leakage or statistical patterns is computationally

prohibitive and practically infeasible due to extensive resources required. Therefore, to con-

duct computationally manageable evaluation, we intentionally restricted randomness of

the initialization vectors (IVs) to 16 bits. Since ciphertext variability directly depends on

IV randomness, this restriction reduced the ciphertext space to approximately 216 (65,536)

unique ciphertexts, creating a controlled yet meaningful experimental scenario to test if ML

models genuinely learn or merely memorize ciphertext patterns.

In our primary experiments with SPECK32/64, we observed that when ML models

were trained on datasets containing extensive oversampling—intentional duplication of

ciphertext samples to explicitly test memorization capabilities of ML models—the models

achieved nearly 99% accuracy. This accuracy reflects memorization of duplicate ciphertext

entries rather than genuine generalization. Conversely, when models were trained with

only a limited number of unique ciphertext pairs without extensive duplication, accuracy

dropped sharply to approximately random guessing (≈50%) when evaluated on unseen

ciphertext pairs. However, these models could still correctly classify ciphertext pairs exactly

matching those in the training set, further underscoring the effect of memorization.

To systematically investigate memorization versus genuine generalization in DL mod-

els, we performed a detailed analysis on datasets generated with 16-bit IV randomness. Our

training dataset comprises 800,000 ciphertext samples, with an equal split (400,000 each)

between ciphertexts of P1 and P2. Within these samples, P1 has 65,395 unique cipher-

texts, while P2 has 65,375 unique ciphertexts. The testing dataset contains a total of

100,000 ciphertexts samples, equally distributed between P1 and P2. Specifically, cipher-

texts corresponding to P1 include 34,974 unique samples, and those corresponding to P2

include 35,049 unique samples, resulting in combined total of 70,023 unique ciphertexts in

the test set.

In our controlled experiment with reduced entropy (16-bits instead of 32-bits), we

selected subsets containing 5000 ciphertext samples per class (10,000 samples in total)

from the training dataset. Within this subset, P1 had 4819 unique ciphertexts, and P2 had

4815 unique ciphertexts, with 366 redundant samples. Upon examining overlaps between

training subset and the complete testing dataset, we identified 5307 overlapping ciphertext

samples. Specifically, 2659 samples of P1 and 2684 samples of P2 appeared in both training

and testing datasets, constituting approximately 5% overlap. Such overlaps are crucial,

as they directly enable memorization effects by allowing the model to recognize previously

encountered samples.

Evaluating the DL model trained on these subsets, we obtained an overall accuracy

of about 53.72%. The cross-validation accuracy was around 52.6%, slightly above random

guessing (50%), indicating a minimal memorization effect. To further clarify whether the

model’s performance resulted from genuine generalization or memorization, we conducted

detailed sample-by-sample analysis. Among the 70,023 unique ciphertexts samples in the

testing dataset, the model correctly classified 53.58% of them. However, when isolating

samples unique only to the testing dataset (thus excluding overlapping training samples),

the accuracy sharply dropped to 49.90%, equivalent to random guessing.

This analysis conclusively demonstrates that ML models fail to identify meaningful

cryptographic patterns or statistically exploitable leakage under artificially simplified

cryptographic conditions. The observed marginal improvements in accuracy above random
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chance are entirely due to memorization of overlapping ciphertext samples, rather than

genuine generalization by the ML algorithm.

Overall, the inability of state-of-the-art ML models to surpass random guessing under-

scores not a deficiency of ML techniques but rather highlights the inherent robustness and

strength of cryptographic indistinguishability within lightweight block cipher designs.

8. Related Work

Linear and Differential Cryptanalysis. Albrecht et al. [42] introduced a unified

framework that synergistically incorporates various differential cryptanalysis techniques,

including standard, truncated, and impossible differentials. These methods are particularly

effective in extending the capabilities of known attacks against lightweight block ciphers

such as KATAN-32. Following a similar thematic exploration, Dinur et al. [43] and Blon-

deau et al. [44] refined differential cryptanalysis techniques specifically for a round-reduced

version of SPECK, highlighting potential weaknesses of these ciphers under constrained

operational conditions. In parallel, Ashur et al. [45] examined the SPECK cipher using

linear cryptanalysis, revealing vulnerabilities across various block sizes and demonstrating

that linear approximations could be exploited to undermine the cipher’s integrity. Com-

plementing these analyses, Biryukov et al. [46] developed a branch-and-bound method

that identifies linear and differential trails in ARX-based ciphers. They specifically applied

this approach to enhance cryptanalytic attacks against SPECK. Further studies on the

operational constraints of these ciphers also support these findings [42,47].

ML for Cryptanalysis. Classical cryptanalysis methods, deeply rooted in the math-

ematical underpinnings of cryptographic algorithms and ciphertexts, Sabaawi et al. [16]

extended these traditional techniques by surveying cryptanalysis implementation on ci-

phers like Caesar, transposition, and Hill. Simultaneously, Khoirom et al. [48] proposed an

image encryption scheme based on elliptic curve cryptography and chaotic maps. Their

work identified vulnerabilities in the original scheme, leading to an improved version

resilient to chosen-plaintext attacks, differential attacks, and statistical attacks, thereby

enhancing security and performance in image encryption. This comprehensive exploration

spans classical and contemporary approaches, highlighting the evolving landscape of

cryptographic techniques for heightened security across diverse applications.

Sikdar et al. [20] conducted a survey on recent cryptanalysis techniques, including

brute-force attacks, exploring the growing influence of machine learning in cryptographic

methods and suggesting future research directions. Verma et al. [21] delved into the

historical significance of brute-force attacks in cybersecurity, emphasizing their enduring

relevance for unauthorized data access. Additionally, Mok et al. [22] proposed an intel-

ligent brute-force attack targeting the RSA cryptosystem, simulating and evaluating the

effectiveness of their approach in terms of time required for RSA key recovery. Collectively,

these works contribute to the understanding and evolution of brute-force cryptanalysis,

addressing its challenges and exploring avenues for improved security measures.

While considering side-channel cryptanalysis methods, which focus on the physical

characteristics and behaviors of cryptographic devices or implementations, Zhou et al. [8]

provided a comprehensive survey covering methods, techniques, and countermeasures

in side-channel attacks, evaluating their feasibility and applicability. In a complementary

study, Randolph et al. [9] present an in-depth tutorial on power side-channel analysis,

spanning the past two decades. The study elucidates fundamental concepts and prac-

tical applications of various attacks, such as Simple Power Analysis (SPA), Differential

Power Analysis (DPA), Template Attacks (TA), Correlation Power Analysis (CPA), Mutual

Information Analysis (MIA), and Test Vector Leakage Assessment (TVLA), along with
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the underlying theories. Additionally, the introduction of test statistics as a measure of

confidence in detecting side-channel leakage adds depth to these analyses.

Mehmood et al. [49] conducted a comprehensive evaluation of distinguishability on

the ciphertexts of AES-128 cipher in CBC and ECB modes. Their methodology involved

employing Support Vector Machine, k-Nearest Neighbours, and Random Forest classifiers

trained on the frequency distribution of characters in the ciphertexts. The results under-

scored the susceptibility of the ECB mode, thereby emphasizing the need for robust encryp-

tion techniques. Building upon this foundation, Hu et al. [50] explored further by applying

Random Forest classifiers to diverse block ciphers, reinforcing the vulnerability of the ECB

mode. These studies not only showcase the evolving landscape of machine-learning-based

cryptanalysis but also highlight its role in ensuring the resilience of cryptographic algorithms.

Xiao et al. [18] significantly contributed to the field of neural network (NN)-based

cryptanalysis by introducing a novel approach that not only focuses on the development of

neural distinguishers but also emphasizes metrics for efficacy assessment. Their framework,

applied to Cyber-Physical System (CPS) ciphers, adds depth to the understanding of NN-

based cryptanalysis.

In summary, while the reviewed literature presents a comprehensive understanding

of various cryptanalysis methods, it is noteworthy that the majority of the approaches

explores differential attacks, statistical attacks, chosen-plaintext attacks, etc. In contrast to

prior research, our work addresses a critical gap in the literature and provides a more com-

prehensive evaluation of the cryptographic indistinguishability of lightweight block ciphers.

9. Conclusions

In this research, we introduced a ML-based framework, MIND-Crypt, designed specif-

ically to assess the cryptographic indistinguishability of SPECK32/64 and SIMON32/64

lightweight block ciphers. Our investigation utilized various state-of-the-art DL architec-

tures to assess these ciphers using ML.

Our results show that DL models fail to surpass random guessing accuracy (≈50%)

in distinguishing ciphertexts of two plaintext messages, P1 and P2, encrypted using same

key. Our analysis for memorization versus generalization evaluations further revealed

that ML models were memorizing ciphertext samples rather than genuinely learning

cryptographic patterns. Even in artificially simplified cryptographic environments with

deliberately reduced entropy, ML algorithms exhibited no ability to generalize beyond

memorized ciphertexts.

These results provide strong empirical evidence that current ML algorithms, despite

their advanced pattern-recognition capabilities, remain ineffective in compromising the

indistinguishability property of even lightweight cryptographic algorithms. Future research

directions could focus on exploring emerging cryptographic algorithms, advanced ML archi-

tectures, or quantum-inspired ML methods to monitor and validate cryptographic resilience.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning

ML Machine Learning

IoT Internet of Things

KPA Known Plaintext Attack

CCA Chosen-Ciphertext Attack

TPE Tree-structured Parzen Estimator

CNN Convolutional Neural Network

LSTM Long-Short Term Memory

BiLSTM Bidirectional Long-Short Term Memory

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Mode

OFB Output Feedback Mode

CTR Counter Mode

IV Initialization Vector

Appendix A. Additional Metrics for the Round-Reduced and
Standard Configurations

In this section, we provide performance analysis of the MIND-Crypt framework using

additional evaluation metrics beyond accuracy, TPR, and TNR. We report Precision, Recall,

F1-Score, ROC-AUC, False Positive Rate (FPR), and False Negative Rate (FNR) for both

round-reduced and standard configurations of SPECK32/64 and SIMON32/64 ciphers

across all evaluated modes of operation (CBC, CFB, OFB, and CTR) and DL architectures

(ResNet, CNN, LSTM, and BiLSTM).

Appendix A.1. Round-Reduced Configuration

Table A1 presents additional performance metrics for the round-reduced configuration.

The ROC-AUC values consistently cluster around 0.5 across all evaluated cipher-mode and

DL architecture combinations, confirming that the models achieve no better than random

classification performance. This metric is particularly significant in cryptographic assess-

ment, as ROC-AUC values approaching 0.5 indicate that the classifier cannot distinguish

between the two ciphertext classes across any decision threshold.

Table A1. Performance metrics for different modes of operation (CBC, CFB, OFB, and CTR) across

ciphers and DL models in round-reduced (5-round) configuration.

Mode Cipher DL Model Accuracy Precision F1-Score ROC-AUC TPR/Recall TNR FPR FNR

CBC

SPECK32/64

ResNet 0.5000 0.0000 0.0000 0.5008 0.0000 1.0000 0.0000 1.0000
CNN 0.5003 0.5043 0.0665 0.5005 0.0355 0.9650 0.0350 0.9644
LSTM 0.5000 0.0000 0.0000 0.5014 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.0000 0.0000 0.5000 0.0000 1.0000 0.0000 1.0000

SIMON32/64

ResNet 0.5002 0.5002 0.4974 0.5003 0.4947 0.5057 0.4943 0.5053
CNN 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765
LSTM 0.5000 0.5053 0.0017 0.4996 0.0008 0.9991 0.0017 0.9992
BiLSTM 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000
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Table A1. Cont.

Mode Cipher DL Model Accuracy Precision F1-Score ROC-AUC TPR/Recall TNR FPR FNR

CFB

SPECK32/64

ResNet 0.5003 0.5043 0.0665 0.5005 0.0355 0.9650 0.0350 0.9644
CNN 0.4998 0.4978 0.0798 0.5000 0.0434 0.9562 0.0438 0.9566
LSTM 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 1.0000 0.0000 0.4996 0.0000 1.0000 0.0000 1.0000

SIMON32/64

ResNet 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000
CNN 0.4998 0.4979 0.0858 0.5008 0.0470 0.9526 0.0474 0.9530
LSTM 0.5000 0.0000 0.0000 0.4997 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4999 0.4999 0.4726 0.4998 0.4481 0.5518 0.4482 0.5519

OFB

SPECK32/64

ResNet 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001
CNN 0.5001 0.5000 0.6158 0.5003 0.8012 0.1990 0.8010 0.1988
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4997 0.4982 0.1387 0.4988 0.0806 0.9188 0.0812 0.9194

SIMON32/64

ResNet 0.5053 0.0009 0.4996 0.0008 0.9991 0.0017 0.9983 0.0009
CNN 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
LSTM 0.5000 0.5500 0.0000 0.4987 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4997 0.4982 0.1387 0.4988 0.0806 0.9188 0.0812 0.9194

CTR

SPECK32/64

ResNet 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765
CNN 0.5005 0.5011 0.2921 0.5002 0.2062 0.7948 0.2052 0.7938
LSTM 0.5000 0.4877 0.0004 0.5007 0.0002 0.9998 0.0002 0.9998
BiLSTM 0.5000 0.5000 0.6666 0.5007 0.9997 0.0003 0.9997 0.0003

SIMON32/64

ResNet 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765
CNN 0.5000 0.5002 0.1091 0.5005 0.0612 0.9388 0.0612 0.9388
LSTM 0.5000 0.0000 0.0000 0.5009 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

The F1-Scores remain significantly low across all configurations, demonstrating that

no model achieves stable, balanced classification performance on both ciphertext classes.

The FPR and FNR values exhibit a consistent trade-off pattern: any reduction in one error

type is systematically offset by a proportional increase in the complementary error type.

This symmetrical error distribution is characteristic of random classification behavior and

reinforces the conclusion that DL models cannot extract statistically exploitable patterns

from round-reduced ciphertexts.

Appendix A.2. Standard Configuration

Table A2 presents additional performance metrics for the standard full-round con-

figuration of SPECK32/64 (22 rounds) and SIMON32/64 (32 rounds). The standard con-

figuration demonstrates behavior consistent with the round-reduced analysis, providing

evidence that the additional rounds in full-specification implementations do not introduce

exploitable patterns detectable by machine learning.

Notably, the standard configuration exhibits the same fundamental characteristics

observed in round-reduced variants: ROC-AUC values remain at approximately 0.5, pre-

diction biases persist across multiple model-mode combinations, and F1-Scores remain

substantially low. These statistics indicate that the diffusion and confusion mechanisms in-

herent in the cipher design operate effectively at both reduced and standard configuration.

The standard configuration shows marginally different bias patterns compared to

round-reduced variants, with some mode and DL architecture combinations exhibiting

opposing prediction tendencies. However, these differences represent variations in ar-

bitrary model behavior rather than improved distinguishing capability, as evidenced by

unchanged accuracies.
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Table A2. Performance metrics for different modes of operation (CBC, CFB, OFB, and CTR) across

ciphers and DL models in standard configuration.

Mode Cipher DL Model Accuracy Precision F1-Score ROC-AUC TPR/Recall TNR FPR FNR

CBC

SPECK32/64

ResNet 0.5000 0.5000 0.6667 0.5001 1.0000 0.0000 1.0000 0.0000
CNN 0.4997 0.4999 0.6548 0.4996 0.9489 0.0505 0.9494 0.0511
LSTM 0.5000 0.0000 0.0000 0.5001 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4999 0.0000 0.0000 0.5003 0.0000 0.9999 0.0000 1.0000

SIMON32/64

ResNet 0.5000 0.5000 0.6667 0.5000 1.0000 0.0000 1.0000 0.0000
CNN 0.4999 0.4998 0.1260 0.5000 0.0720 0.9278 0.0722 0.9280
LSTM 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001
BiLSTM 0.5000 0.5295 0.0010 0.5003 0.9996 0.0004 0.9996 0.0004

CFB

SPECK32/64

ResNet 0.4997 0.4999 0.6548 0.4996 0.9489 0.0505 0.9494 0.0511
CNN 0.5002 0.5014 0.1419 0.4997 0.0826 0.9178 0.0822 0.9174
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4999 0.4974 0.0323 0.4994 0.0167 0.9831 0.0169 0.9833

SIMON32/64

ResNet 0.4999 0.4998 0.1260 0.5000 0.0720 0.9278 0.0722 0.9280
CNN 0.4999 0.4999 0.6152 0.4996 0.7994 0.2003 0.7997 0.2006
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5001 0.5000 0.6614 0.4993 0.9765 0.0237 0.9763 0.0235

OFB

SPECK32/64

ResNet 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000
CNN 0.5002 0.5001 0.6504 0.5006 0.9297 0.0707 0.9293 0.0703
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.4994 0.0491 0.4992 0.0258 0.9741 0.0259 0.9742

SIMON32/64

ResNet 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001
CNN 0.4999 0.4999 0.6152 0.4996 0.9949 0.0049 0.9951 0.0051
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.0000 0.0000 0.4997 0.0000 1.0000 0.0000 1.0000

CTR

SPECK32/64

ResNet 0.5000 0.5295 0.0010 0.5003 0.9996 0.0004 0.9996 0.0004
CNN 0.5002 0.5001 0.6302 0.5002 0.8517 0.1487 0.8513 0.1483
LSTM 0.5000 0.4877 0.0004 0.5007 0.0002 0.9998 0.0002 0.9998
BiLSTM 0.4999 0.5000 0.6664 0.5003 0.9987 0.0012 0.9988 0.0013

SIMON32/64

ResNet 0.5002 0.5002 0.4974 0.5003 0.4947 0.5057 0.4943 0.5053
CNN 0.4997 0.4998 0.6529 0.5001 0.9413 0.0581 0.9419 0.0587
LSTM 0.5000 0.4999 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.5000 0.6667 0.5008 1.0000 0.0000 1.0000 0.0000

Appendix B. Summary of Extensions over the PST 2025
Conference Version

The journal manuscript contains substantial new contributions compared with confer-

ence version [25], including the following:

1. Expansion from single-mode (CBC) to comprehensive four-mode evaluation: The

conference version focused solely on the CBC mode for both ciphers. In this journal

version, we extend the framework to cover all four standard modes of operation (CBC,

CFB, OFB, and CTR), for both SPECK32/64 and SIMON32/64, and for multiple DL

architectures in both round-reduced and full-round configurations.

2. Analysis of mode-dependent bias in ML models: Beyond reporting aggregate accu-

racy, we provide detailed, mode-by-mode analysis of classifier behavior, including

TPR/TNR, FPR/FNR, and ROC-AUC for each cipher mode and mode combination.

We identify and discuss mode-dependent biases, for example, cases where a model

collapses to predicting a single class in certain modes or exhibits asymmetric error

patterns between “ciphertext” and “random” classes.

3. Enhanced methodological rigor with mode-specific hyperparameter optimization:

The journal manuscript introduces mode-specific and cipher-specific hyperparameter

optimization to ensure that each DL architecture is trained under settings tailored to

the underlying data distribution (e.g., learning rates, batch sizes, epochs, dropout rates,

etc.). This represents a methodological refinement over the conference version, which

used more uniform training configurations. We also provided additional details on
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dataset generation and evaluation metrics, thereby strengthening both reproducibility

and the credibility of our findings.
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