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Abstract

Indistinguishability is a fundamental principle of cryptographic security, crucial for se-
curing data transmitted between Internet of Things (IoT) devices. This principle ensures
that an attacker cannot distinguish between the encrypted data, also known as cipher-
text, and random data or the ciphertexts of two messages encrypted with the same key.
This research investigates the ability of machine learning (ML) to assess the indistin-
guishability property in encryption systems, with a focus on lightweight ciphers. As
our first case study, we consider the SPECK32/64 and SIMON32/64 lightweight block
ciphers, designed for IoT devices operating under significant energy constraints. In this re-
search, we introduce MIND-Crypt (a Machine-learning-based framework for assessing the
INDistinguishability of Cryptographic algorithms), a novel ML-based framework designed
to assess the cryptographic indistinguishability of lightweight block ciphers, specifically
the SPECK32/64 and SIMON32/64 encryption algorithms in CBC, CFB, OFB, and CTR
modes, under Known Plaintext Attacks (KPAs). Our approach involves training ML models
using ciphertexts from two plaintext messages encrypted with the same key to determine
whether ML algorithms can identify meaningful cryptographic patterns or leakage. Our
experiments show that modern ML techniques consistently achieve accuracy equivalent to
random guessing, indicating that no statistically exploitable patterns exist in the ciphertexts
generated by the considered lightweight block ciphers. Although some models exhibit
mode-dependent bias (e.g., collapsing to a single-class prediction in CBC and CFB), their
overall accuracy remains at random guessing levels, reinforcing that no meaningful distin-
guishing patterns are learned. Furthermore, we demonstrate that, when ML algorithms
are trained on all possible combinations of ciphertexts for given plaintext messages, their
behavior reflects memorization rather than generalization to unseen ciphertexts. Collec-
tively, these findings suggest that existing block ciphers have secure cryptographic designs
against ML-based indistinguishability assessments, reinforcing their security even under
round-reduced conditions.

Keywords: lightweight block ciphers; cryptanalysis; deep learning

1. Introduction

Indistinguishability is the basis for building secure encryption systems. Concretely,
indistinguishability means that the adversary cannot tell the difference between the cipher-
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texts corresponding to two plaintexts with a probability significantly better than 0.50. It is
an important notion underlying encryption security since it implies that the adversaries
are unable to decipher any useful information about the plaintext given the ciphertext.
Moreover, a broken indistinguishability property exposes deterministic or predictable
patterns in the encryption process, making the system susceptible to more effective attacks,
such as ciphertext-only attacks where the plaintext is deciphered without the key. This not
only undermines the trust and reliability of the cryptographic system but also paves the
way for practical decryption techniques that could exploit this predictability. Therefore,
preserving indistinguishability is essential to maintain the overall integrity and security of
encryption schemes.

Lightweight Block Ciphers. The Internet of Things (IoT) exemplifies a domain where
cryptography’s vital role is particularly pronounced, due to its explosive growth and the
evolving capabilities of connected devices. With projections estimating about 40 billion
devices connected by 2030 [1-4], the diversity of applications—from smart home devices
enhancing residential convenience and security to advanced systems in healthcare moni-
toring and industrial IoT (IloT)—is transforming traditional industries. However, many
IoT devices operate under constraints of processing power and memory, necessitating
cryptographic solutions that optimize security without imposing significant computational
burdens. Among lightweight block ciphers, the SPECK32/64 and SIMON32/64 ciphers,
designed by the National Security Agency, stand out for their operational efficiency and
simplicity, tailored specifically to meet the needs of these resource-constrained environ-
ments [5-7].

Cryptanalysis and Machine Learning. As cryptographic systems evolve in complex-
ity and sophistication, so too does cryptanalysis—the study and practice of deciphering
codes, ciphers, and encrypted messages without the use of actual key. This discipline
has seen significant advancements through a variety of techniques, reflecting the ongo-
ing arms race between cryptography and cryptanalysis. Traditional methods such as
side-channel attacks [8-11], fault injection attacks [12-15], mathematical analysis [16-18],
and brute-force attacks [19-22] have continually been refined in tandem with advance-
ments in cryptographic techniques. However, as cryptographic algorithms become more
complex, the effectiveness of these traditional approaches is increasingly challenged, neces-
sitating newer methodologies. This evolving landscape has sparked considerable interest
in integrating machine learning with cryptanalysis, offering novel approaches to breaking
cryptographic systems and presenting new challenges to their robustness.

In 2019, Gohr [23] proposed a differential attack on round-reduced SPECK32/64,
focusing on the development of neural distinguishers that could effectively distinguish
ciphertexts differing by a specific difference delta from random text. This approach lever-
aged deep learning (DL), specifically deep residual neural networks, which demonstrated
superior performance compared to traditional cryptographic distinguishers. Further en-
hancing the practicality of his method, Gohr integrated a novel key search policy based
on Bayesian optimization, significantly improving the efficiency of key recovery processes.
Following Gohr’s work, Benamira et al. [24] conducted detailed analysis and showed
neural distinguisher developed by Gohr generally relies on the differential distribution on
the ciphertext pairs but also on the differential distribution in penultimate and antepenulti-
mate rounds. This approach not only showcased DL’s potential in enhancing traditional
cryptanalysis but also emphasizes the need to probe deeper into the cipher’s behavior by
exploring the notion of indistinguishability. Unlike prior research focused primarily on
differential cryptanalysis, our approach uniquely targets indistinguishability—an essential
property underpinning robust encryption—and systematically assesses it against advanced
machine learning methods.
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Our research investigates the potential of ML techniques to assess the indistinguisha-
bility of lightweight block ciphers, specifically SPECK32/64 and SIMON32/64 under
CBC, CFB, OFB, and CTR modes of operation. Compromising indistinguishability
renders the cipher fundamentally insecure. This process involves training a deep
learning model on ciphertexts from two distinct messages, P; and P,, and aims to
determine if a challenge ciphertext belongs to message P; or P».

Focus of Our Research. In contrast to Gohr [23], our research shifts the focus from dif-
ferential attack strategies to the broader concept of indistinguishability within lightweight
block ciphers (e.g., SPECK32/64 and SIMONB32/64). Unlike Gohr’s approach, which targets
specific, known differential paths for key recovery, our study employs ML to assess whether
a model can distinguish between ciphertexts of two plaintext messages encrypted using
the same key. Our analysis demonstrates that achieving a generalized ML-based indis-
tinguishability is fundamentally more challenging than exploiting predefined differential
characteristics. Consequently, our results highlight that existing lightweight block ciphers
remain robust, as current ML methods fail to compromise their indistinguishability.

To illustrate the practical implications of our research, consider a scenario involv-
ing a smart home security system that utilizes the SPECK32/64 or SIMONB32/64 cipher
to encrypt data from sensors such as motion detectors and window sensors. If indistin-
guishability were compromised, an adversary might differentiate encrypted sensor signals,
distinguishing, for instance, whether ciphertext originates from motion sensors detecting
indoor movement or window sensors detecting window openings. Such an ability would
pose severe privacy risks, enabling unauthorized parties to infer sensitive patterns (e.g.,
movements), without explicitly decrypting the messages.

Formally, in our study, we address the following research question: Can ML techniques
compromise the indistinguishability property of lightweight block ciphers? Our findings provide
strong evidence that current lightweight block cipher implementations are secure against
ML-based indistinguishability assessments.

When designing MIND-Crypt, we considered assumptions typical of the Known
Plaintext Attack (KPA) scenario, where the attacker has access to both plaintexts and their
corresponding ciphertexts encrypted under the same key. Here, the primary focus of an
attacker is to identify if the challenge ciphertext belongs to message P; or P;, thus testing
the fundamental indistinguishability of the considered encryption schemes. Our objective
is not to demonstrate vulnerability but to investigate whether subtle leakages might be
exploited by ML. We study both its standard configuration and round-reduced versions to
understand if these variations affect resistance to ML.

Our Methodology and Experiments. We approach this challenge by framing the
task as a binary classification problem, where the ML classifier is trained on previously
known ciphertexts C; and C; corresponding to two fixed plaintexts P; and P,, respectively,
and using the trained model to predict whether any new challenge ciphertexts correspond
to P or P,. To train the model, the attacker generates ciphertexts of these messages by
encrypting them under the same key.

Our experiments show that the performance of the ML models remains consistently
around random guessing levels (=50%). These findings suggest that ML models are
unable to extract meaningful patterns from ciphertexts produced by lightweight encryption
schemes. Consequently, our results emphasize that ML techniques, despite their advanced
capabilities, cannot challenge the indistinguishability property cryptographic algorithms.

Our Contributions and Summary of Results. The main contributions and findings
are summarized as follows:
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1. A Novel Machine Learning Framework: We designed MIND-Crypt, a novel machine-
learning-based framework that utilized ML techniques to investigate the indistin-
guishability of lightweight block ciphers. More specifically, we leverage DL to imple-
ment MIND-Crypt.

2. Comprehensive Evaluation of Cryptographic Indistinguishability: We evaluate
the cryptographic indistinguishability of SPECK32/64 and SIMON32/64 across four
widely used block cipher modes of operation (CBC, CFB, OFB, and CTR) using multi-
ple state-of-the-art DL architectures. Our experiments demonstrate that all evaluated
ML models consistently achieve accuracies equivalent to random guessing (~50%),
clearly indicating their inability to detect meaningful cryptographic leakage or statisti-
cal patterns.

3. Analysis of Memorization vs. Generalization: We provide a detailed analysis dis-
tinguishing memorization from generalization in DL model predictions, leveraging
reduced-entropy datasets specifically designed to study memorization effects.

4. Security Assurance for IoT Devices: Our results provides practical assurance, demon-
strating that lightweight block ciphers such as SPECK32/64 and SIMON32/64 are
secure against ML-based indistinguishability attacks in realistic, resource-constrained
IoT environments.

This article is an extended version of our conference paper presented at the 21st
Annual International Conference on Privacy, Security and Trust (PST 2025) [25], where
we introduced the MIND-Crypt framework and evaluated it only for the CBC mode of
operation. A detailed summary of the extensions in this journal version is provided in
Appendix B.

Reproducibility. Our code is publicly available [26].

2. Background and Preliminaries

In this section, we provide important context in the form of basic background on block
cipher SPECK32/64, Residual Neural Networks, and Transfer Learning.

2.1. Lightweight Block Ciphers

A block cipher is a deterministic permutation that operates on fixed size blocks of
data. Since plaintexts are typically longer than a single block and semantic security is
required, block ciphers are used in conjunction with modes of operation. A mode of
operation specifies how encryption is applied across multiple blocks and how randomness
is incorporated to prevent information leakage. In this work, we consider four widely
deployed block cipher modes: Cipher Block Chaining (CBC), Cipher Feedback (CFB),
Output Feedback (OFB), and Counter (CTR) for SPECK32/64 and SIMON32/64 lightweight
block ciphers.

2.1.1. SPECK32/64 Block Cipher

SPECK is a family of lightweight block ciphers, denoted as SPECKM/ N, where M and
N are block size and key size, respectively, in bits, developed by Beaulieu, Treatman-Clark,
Shors, Weeks, Smith, and Wingers [27] for NSA. It is an add-rotate-xor (ARX) cipher with
operations like modular addition (mod 2K) B, bitwise addition @, and bitwise rotation
(left < and right >>) applied on k-bit words, aimed to build efficient cipher for software
implementations in IoT devices [7]. The round function of SPECK F : F%k X F%k — F%k
computes the next round state (L; 1, R; ;1) using a k-bit subkey K and current round state
(Li/ Rl) as Ly = ((Ll > DC) H RZ) @ K and Riz1 = (RI < ﬁ) @ Liy1. Here, a and ‘B
are rotation constants (¢« = 7,8 = 2 for SPECK32/64 and « = 8,8 = 3 for remaining).
The ciphertext is produced from the input plaintext by employing this round function for a
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fixed number of times (22 rounds for SPECK32/64). Further, the design of SPECK32/64
balances security with minimal computation overhead, making it an ideal candidate for
studying indistinguishability in resource-constrained IoT devices [6,7].

2.1.2. SIMONB32/64 Block Cipher

SIMON is a family of lightweight block ciphers, denoted as SIMONM /N, where M
represents the block size in bits, and N denotes the key size in bits. SIMON was designed by
Beaulieu, Shors, Smith, Treatman-Clark, Weeks, and Wingers for the NSA [27], specifically
optimized for efficient implementation in hardware-constrained environments, such as
embedded systems [7]. SIMON employs a balanced Feistel network structure, particularly
suited for hardware efficiency due to its simplicity, minimal gate count, and compact
area utilization.

For SIMONB32/64, the cipher employs a word size of 16 bits (thus a 32-bit block
size) and a 64-bit key. The SIMONB32/64 variant uses 32 rounds of encryption, providing
adequate security for resource-constrained devices. The minimalistic and serialized design
makes it highly suitable for hardware implementations where area minimization and power
efficiency are critical, such as embedded IoT platforms [6,7].

3. Threat Model and Assumptions

Our study investigates the security of the SPECK32/64 and SIMON32/64 lightweight
block ciphers. We consider a known plaintext passive adversary model on block ciphers
instantiated with four modes of operation: CBC, CFB, OFB, and CTR. We primarily focus
on an attacker’s ability to distinguish between the ciphertexts of two different messages
encrypted using the same key. This is particularly relevant for IoT devices that operate
under significant energy constraints and require efficient and lightweight cryptographic
solutions like the SPECK32/64 or SIMON32/64 cipher.

In our attack model, we consider a passive attack scenario where the attacker observes
multiple ciphertexts, all encrypted with the same key, without performing active attacks
such as Chosen-Ciphertext Attacks (CCA). To illustrate the practical implications of vio-
lating indistinguishability (briefly noted in Section 1) in cryptographic systems, consider
a smart home security system that uses the SPECK32/64 or SIMONB32/64 lightweight
block cipher to encrypt data from various constrained IoT sensors around the house. These
sensors—including motion detectors, cameras, and window sensors—regularly send en-
crypted data to a central monitoring system. Adopting a passive attack scenario enhances
the practical relevance of our assessment, as it represents a realistic threat where attack-
ers merely observe ciphertexts without active manipulations, commonly encountered in
practical IoT security environments.

Mathematically, we denote the plaintext by P, the ciphertext by C, and the secret key
by K. The encryption function £k uses the key K to transform plaintext into ciphertext.
A cipher maintains indistinguishability if no polynomial-time adversary can distinguish
between the ciphertexts of two different plaintexts encrypted with the same key with a
probability significantly better than 0.5.

The attacker selects two different fixed plaintexts, P; and P, (e.g., “heat” or “cool”
commands that adjusts the temperature using thermostat), which are encrypted using the
same secret key K, resulting in ciphertexts C; and Cy. Subsequently, the attacker employs
a DL model, trained with multiple instances of ciphertexts C; and C,. This model is then
utilized to classify new challenge ciphertexts, determining whether they correspond to P
or P,, potentially breaching the indistinguishability property of the encryption scheme.

Our model extends these concepts by allowing the attacker to simulate data generation
without direct access, avoiding the active manipulation typical of CCA. The attacker aims
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to identify patterns, anomalies, or relationships in the ciphertexts that differentiate those
corresponding to two distinct, same-byte-length plaintexts. Successfully differentiating
ciphertexts beyond chance agreement signifies vulnerabilities in the block cipher, whereas
failure to do so would validate the cipher’s robustness under passive attack settings.

4. MIND-Crypt: Design and Methodology

In this section, we introduce MIND-Crypt, a machine-learning-based assessment
framework designed to evaluate the cryptographic indistinguishability of lightweight
block ciphers, specifically SPECK32/64 and SIMON32/64, operating in CBC, CFB, OFB,
and CTR modes.

4.1. Framework Design

Our primary objective is to investigate whether ML algorithms can identify statistically
meaningful patterns or cryptographic leakage in ciphertexts generated by these lightweight
block ciphers. DL models have demonstrated significant promise for solving complex
classification problems in cybersecurity, such as malware detection, intrusion detection,
and traffic classification. In this study, we utilized multiple DL architectures, namely, Con-
volution Neural Networks [28] (CNNs), Long-Short Term Memory (LSTM) [29] networks,
Bidirectional LSTM (BiLSTM) [30] networks, and Residual Neural Networks (ResNets) [23],
to comprehensively evaluate cryptographic indistinguishability of lightweight block ci-
phers. The details of these DL architectures are as follows:

4.1.1. Convolutional Neural Networks (CNNs)

CNNs, introduced by LeCun et al. [28], can effectively extract hierarchical spatial
features from input data via convolutional layers. CNNs leverage multiple convolutional
layers to automatically identify hierarchical patterns within the input data, which reduces
the reliance on manual feature extraction. Although CNNs have historically been applied
extensively in image recognition tasks, their capability to capture subtle local statistical
dependencies also makes them well suited for security research. CNNs are highly effective
for classification tasks involving structures, grid-like data. These models have success-
fully improved classification accuracy for security problems such as network intrusion
detection [31] and malware analysis [32].

4.1.2. Long-Short Term Memory (LSTM)

LSTMs were introduced by Hochreiter and Schmidhuber [29] are a type of recurrent
neural network capable of learning sequential dependencies and long-term temporal pat-
terns. LSTM architectures employ specialized gating mechanisms that include input, output
and forget gates to effectively preserve long-range dependencies within sequential data,
addressing the vanishing gradient problem common to traditional RNNs. For ciphertext
indistinguishability assessment, the sequential characteristics of ciphertext bits are critically
important. The intrinsic ability of LSTM networks to capture long-range sequential pat-
terns makes them particularly suitable for analyzing cryptographic ciphertexts generated
through block ciphers.

4.1.3. Bidirectional Long-Short Term Memory (BiLSTM)

BiLSTM network architecture proposed by Graves and Schmidhuber [30] enhances tra-
ditional LSTM architectures by simultaneously processing input sequences in both forward
and backward directions. This bidirectional processing allows BiLSTM networks to lever-
age past and future context at each point in a given sequence, significantly improving their
ability to capture complex dependencies. In cryptographic indistinguishability analysis,
the direction-agnostic nature of BILSTMs may offer additional sensitivity in detecting sub-
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tle statistical differences across ciphertext sequences, thereby providing a comprehensive
evaluation capability for the presence or absence of cryptographic leakage or patterns.

4.1.4. Residual Neural Networks (ResNets)

He et al. [33] introduced ResNets to address the vanishing gradients problem in
deep neural network (DNN) training by utilizing residual blocks. These blocks, featuring
stacked convolutional layers with skip connections, allow the network to learn residual
functions, focusing on differences rather than complete transformations. ResNets have
been successfully applied in various security applications [34-37].

In cryptanalysis, ResNet models are effective at identifying complex patterns, which
helps with tasks such as automated cipher breaking and differential cryptanalysis. Their
architecture allows for more accurate and efficient prediction of differential characteristics,
enhancing encryption analysis and vulnerability insights. A prominent example is the work
of Gohr et al. [23], who leveraged deep residual neural networks to identify differential
characteristics in round-reduced versions of lightweight block ciphers such as SPECK32/64.
Their findings highlighted that ResNets could surpass traditional cryptanalytic methods
in specific scenarios involving reduced cipher complexity. Adrien et al. [24] discuss how
machine learning, including ResNets, advances cryptanalytic and cyber defense techniques.

4.2. Framework Implementation

Figure 1 illustrates our assessment framework, detailing the entire process from mes-
sage selection and ciphertext generation to ML-based assessment. Initially, two plaintext
messages P; and P,, each measured in byte length and differing by exactly one bit, are
encrypted multiple times using either SPECK32/64 or SIMON32 /64 ciphers under a fixed
encryption key k using CBC, CFB, OFB, and CTR modes. Our DL models are trained for the
binary classification task of separating ciphertexts into two classes: ¢; and ¢,. To explain, ¢;
includes the ciphertexts of Py, labeled as C1; (C1; = Ency(P;)), wherei € {1,2,...,n}. Sim-
ilarly, ¢, includes the ciphertexts of P, labeled as C2; (C2; = Ency(P)) fori € {1,2,...,n}.
It should be noted that the Initialization Vectors (IVs) are used only as a part of encryp-
tion process and not included in the training data of the DL model. This design choice
ensures that the model learns to identify any intrinsic properties or subtle differences in the
ciphertext generated from P; and P, without relying on external factor of the IVs.

Following ciphertext generation, we convert the ciphertexts into binary format, adher-
ing to the data preparation methods described by Gohr et al. [23] for examining differential
attacks on SPECK32/64. Utilizing this methodology, we feed these binary ciphertexts into
a DL model. While Gohr et al. [23] demonstrated the effectiveness of ResNet models in
identifying differential characteristics within ciphertexts, their approach primarily lever-
aged spatial hierarchical features through convolutional residual blocks. To thoroughly
assess cryptographic indistinguishability, we employ diverse DL architectures capable of
capturing different types of patterns or subtle biases within ciphertext data. Specifically, we
selected CNN architectures for their proven efficiency in extracting spatial and local feature
patterns. Additionally, we included LSTM and BiLSTM networks due to their capability to
detect sequential dependencies and temporal correlations that might remain undetected
by purely convolution-based architectures. The combination of spatial (CNN), sequential
(LSTM/BIiLSTM), and hierarchical (ResNet) learning mechanisms ensures a robust, multi-
dimensional analysis, providing comprehensive insights into security of lightweight block
ciphers against varied ML-based cryptanalytic approaches. Each DL model in our frame-
work is trained for binary classification to distinguish ciphertexts derived from plaintexts
Py and Ps.
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Figure 1. The MIND-Crypt assessment framework—investigating the indistinguishability of
SPECK32/64 and SIMONB32/64 lightweight block ciphers across four modes of operation (CBC,
CFB, OFB, and CTR). Two plaintext messages encrypted under the same key are processed through
each mode, generating ciphertext datasets used to train and evaluate deep learning models.

Finally, the trained ML models are evaluated on unseen challenge ciphertext sam-
ples. By analyzing model predictions and systematically comparing their performance
against a random guessing baseline (~50% accuracy), we provide empirical insights into
whether state-of-the-art ML techniques can uncover meaningful cryptographic vulnera-
bilities. Rather than demonstrating exploitable weakness, our comprehensive assessment
highlight the robustness of lightweight block cipher designs against ML-based indistin-
guishability attacks.

5. Assessing Lightweight Block Ciphers Using MIND-Crypt

In this section, we describe how our proposed MIND-Crypt framework can be utilized
for assessing lightweight block ciphers. We describe the datasets, experiment settings,
and evaluation metric considered for assessing our framework.

5.1. Description of the Dataset

In our study, we evaluated the effectiveness of the MIND-Crypt by utilizing a pub-
licly available implementation of SPECK32/64 provided by Gohr [23] and SIMON32 /64
implementation [38].

For the CBC mode of SPECK32/64, we retained a modified version of Gohr’s original
implementation. This choice was made to preserve direct experimental comparability with
Gohr’s prior results. Maintaining this implementation for CBC of SPECK32/64 ensures
that any observed differences between the original work and our extended evaluation can
be attributed to the learning framework and experimental design rather than to software
level discrepancies.

To this end, we made several modifications to the original SPECK32/64 implementa-
tion provided in [23]:

1. Encryption Mode: We shifted from the Electronic Code Book (ECB) mode used in
Gohr’s original code to CBC mode. This change involved encrypting the messages
using CBC mode with randomly generated initialization vectors (IVs).

2. Key Usage: Unlike the original implementation that used varying keys, we utilized a
single, fixed key securely generated using Gohr’s methodology. This consistency was
vital for comparing the indistinguishability of outputs. This approach allowed us to
isolate the impact of message variation on ciphertext indistinguishability without key
variability influencing the results.
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3. Generating I'Vs: We employed the frombuffer module in NumPy library in conjunc-
tion with Python’s os.urandom to generate cryptographically secure IVs, mirroring
Gohr’s method.

4. Correctness: To ensure the correctness of our modifications, we decrypted the ci-
phertexts to verify that they reverted accurately to the original plaintexts, labeled ‘0
and 1.

5. Message Selection: We chose two specific messages of identical 32-bit length, differing
by only a single bit at the binary level, labeled ‘0" and ‘1’. This allowed us to directly
assess the effect of minimal input variation on the encryption output.

Importantly, both implementations realize the same algorithmic specification of
SPECK32/64 and differ only in software structure and experimental interfacing. The round
functions, key schedules, and encryption operations are identical. Consequently, the use of
two implementations does not introduce cryptographic bias and does not affect the validity
of the indistinguishability evaluation.

Additionally, to distinguish between memorization and generalization behaviors
exhibited by ML models, we conducted a proof-of-concept evaluation using a simplified
cryptographic setup. Specifically, we intentionally reduced the entropy in the SPECK32/64
encryption algorithm from the standard 32 bits to 16 bits. This reduction created an
artificially weakened cryptographic scenario, significantly decreasing the complexity and
thereby increasing the potential for identifiable statistical patterns. We emphasize that this
simplified experiment was conducted solely for analyzing ML model behaviors regarding
memorization versus genuine generalization and was not intended as a realistic assessment of
the cipher’s actual indistinguishability or security under standard cryptographic conditions.

For exploring indistinguishability using DL, we collected 107 training samples,
10% samples each for validation and testing across ‘R’ rounds of encryption schemes.
Each dataset segment maintained an equal number of samples from two classes, represent-
ing ciphertexts of two distinct plaintext messages encrypted with the same key. The training
data was used to train a DL model, while the testing data was utilized to evaluate the
performance of the trained model on an unseen dataset. This allowed the DL model to
detect subtle differences in ciphertexts of the selected messages. To facilitate the learning
process, the ciphertexts were represented as 32-bit binary vectors, providing a consistent
input format for the DL.

5.2. Experiment Settings

The implementation of the MIND-Crypt was conducted using the Python v3.9 pro-
gramming language, leveraging the open-source library TensorFlow [39] for the develop-
ment, training, and evaluation of the DL model. To optimize the neural network’s hyper-
parameters, we employed Optuna [40], a software framework designed for efficient and
automatic hyperparameter optimization. Specifically, we utilized Optuna’s TPESampler,
which implements the Tree-structured Parzen Estimator (TPE) algorithm—a Bayesian
optimization approach that models the objective function using two separate densities to ef-
ficiently navigate the hyperparameter search space [41]. The hyperparameter search process
was configured to execute up to 100 trials or terminate if the search duration exceeded 200 h
for each combination of cipher, mode, and DL architecture. Specifically, hyperparameter op-
timization was performed independently for SPECK32/64 and SIMON32/64, across all four
modes of operation (CBC, CFB, OFB, and CTR), and for each of the four DL architectures
(ResNet, CNN, LSTM, and BiLSTM), resulting in comprehensive model tuning tailored
to each experimental configuration. The search space for the hyperparameters is detailed
Tables 1 and 2.
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Table 1. Model-specific hyperparameter search space.

LSTM-Based Models (LSTM CNN-Based Model @1D

Hyperparameter and BiLSTM) CNN)

No. of LSTM Layers {2,3,4,5,6,7,8,9} -

LSTM Cells in Each Layer {200, 300, 400, 500} -

No. of Convolution Layers - {2,3,4,5,6,7,8,9}

No. of Filters - {2,4,8,16,32, 64,128, 256}

. {2,3,4,5,7,9,11, 13, 15, 17,

Kernel Size - 19, 21)

Convolution Stride Size - 12,3,4,5,7,9,11,13,15,17,
19, 21}

Pool Size - {1,2,3,4}

Pool Stride Size - {2, 3, 4}

Table 2. Common hyperparameter search space across all models.

Hyperparameter Search Space

decay {0.05,0.1,0.2, 0.3}

Dropout Rate {0.05,0.1,0.2, 0.3, 0.4}

Activation Function {Softsign, ELU, Selu, ReLU, Tanh}

No. of Dense Layers {1,2,3,4,5,6,7,8,9}

No. of Neurons in FC Layer {256, 512, 1024, 2048, 4096}

Activation Function in FC Layer ({Softsign, ELU, Selu, ReLU, Tanh}

Dropout Rate FC {0.05,0.1, 0.2, 0.3, 0.4}

optimizer {RMSprop, Adagrad, Adam, Adamax, Nadam, SGD}

Epochs {100, 200, 300}

Batch Size {256, 512, 1024}

Learning Rate [0.00001, 0.01] (log scale)

DL Model Training for Indistinguishability Assessment. To study cryptographic
indistinguishability of ciphertexts, we implemented and trained four distinct DL architec-
tures: ResNets [23], CNN, LSTM, and BiLSTM networks. The ResNet architecture developed
by Gohr was specifically selected due to its success in identifying differential characteristics in
reduced-round versions of SPECK32/64 cipher. We adapted Gohr’s ResNet model for our binary
classification task. This adaptation aimed to assess whether ML could effectively distinguish
ciphertexts generated from two distinct plaintexts, P; and P,, encrypted using same key.

We extended the assessment to include CNN, LSTM, and BiLSTM architectures, com-
monly employed in image and sequence processing. These models were adapted to process
ciphertext data by converting inputs into binary vector representations, facilitating sequen-
tial (LSTM/BiLSTM) or spatial (CNN) feature extraction. This methodology ensured a
comparative analysis of DL architectures in the context of ciphertext indistinguishability.
Detailed architectural specifications and hyperparameter settings for the ResNet model are
available in Gohr [23].

5.3. Evaluation Metrics

To evaluate the efficacy of the MIND-Crypt across different settings, we performed
a comprehensive assessment using a DL model to classify ciphertexts into two distinct
classes, ¢; and ¢,. This evaluation employs three key metrics: Accuracy, True Positive Rate
(TPR), and True Negative Rate (INR), similar to the metrics considered in studies by [23,24] that
explore differential attacks in the SPECK32/64 encryption scheme. Furthermore, accuracy, TPR,
and TNR were specifically chosen because they collectively provide clear insights into model
biases, detection capabilities, and overall effectiveness in distinguishing ciphertext classes.

Accuracy gauges the model’s overall effectiveness at correctly classifying ciphertexts
belonging to class ¢; or {. We calculate accuracy as the proportion of correct classifi-
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cation—both true positives and true negatives—out of the total ciphertexts examined.
A higher accuracy value reflects superior model performance in discriminating accurately
between ciphertexts associated with classes ¢; and ¢».

The True Positive Rate (TPR), also known as Recall or Sensitivity, measures the pro-
portion of ciphertext samples that truly belong to the class ¢;. In our experiments, a higher
TPR indicates that the classifier more consistently identifies ciphertext from ¢, reducing
false negatives and improving the reliability of the empirical distinguishers.

The True Negative Rate (TNR), or Specificity, evaluates the model’s accuracy in classi-
fying ciphertexts into class ¢, when they do not belong to class ¢;. This measure is essential
for ensuring the model effectively identifies ciphertexts that do not adhere to the charac-
teristics of class ¢, thus preventing false positives. A high TNR underscores the model’s
reliability in excluding non-conforming encryption outputs, pivotal for upholding robust
cryptographic defenses.

In addition to these key metrics, we also provided detailed analysis using Precision,
Recall, F1-Score, Receiver Operating Characteristic Area Under the Curve (ROC-AUC),
False Negative Rate (FNR), and False Positive Rate (FPR) in Appendix A.

6. Results

We evaluated the cryptographic indistinguishability of the SPECK32/64 and SI-
MONB32/64 lightweight block ciphers using four DL architectures: ResNet, CNN, LSTM,
and BiLSTM. Experiments were performed under both round-reduced (five-round) and
standard full-round configurations. In addition, four modes of operation were examined:
CBC, CFB, OFB, and CTR. The resulting classification performance for all combinations is
summarized in Tables 3 and 4.

Table 3. Indistinguishability assessment for SPECK32/64 and SIMON32/64 in round-reduced
(5-round) configuration using MIND-Crypt.

CBC and CFB
CBC CFB
Cipher DL Model Accuracy TPR  TNR Accuracy TPR  TNR
ResNet 05000  0.0000 1.0000 05003  0.0355 09650
CNN 05003  0.0355 09650 04998  0.0434 09562
SPECK32/64 | o\ 05000  0.0000 1.0000 05000  0.0000 1.0000
BiLSTM 05000  0.0000 1.0000 05000  0.0000 1.0000
ResNet 05002 04947 05057 05000  0.0000 1.0000
CNN 04993 02235 07750 04998  0.0470 09526
SIMONS32/64 | o\ 05000 00008 09991 05000  0.0000 1.0000
BiLSTM 05000  0.0000 1.0000 04999 04481 05518
OFB and CTR
OFB CTR
Cipher DL Model Accuracy TPR  TNR Accuracy TPR  TNR
ResNet 05000 04999 05000 04993 02235 07750
CNN 05001 08012 01990 05005 02062 0.7948
SPECK32/64 | or\y 05000  0.0000 1.0000 05000  0.0002 09998
BiLSTM 04997 00806 09188 05000 09997 0.0003
ResNet 05053 09991 00017 04993 02235 07750
CNN 05000  0.0000 1.0000 05000 00612 09388
SIMON32/64 | o1\ y 05000  0.0000 1.0000 05000  0.0000 1.0000
BiLSTM 04997 00806 09188 05000  0.0000 1.0000
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Across all ciphers, modes, and DL architectures, the experimental results show that
classification accuracy remains clustered around random guessing (50%). These results
indicate that the ciphertexts produced by the evaluated encryption schemes do not reveal
structural features or distinguishing patterns that can be exploited by the DL models.

Table 4. Indistinguishability assessment for SPECK32/64 and SIMON32/64 in standard configuration
using MIND-Crypt.

CBC and CFB
CBC CFB
Cipher DL Model Accuracy TPR  TNR Accuracy TPR  TNR
ResNet 05000  1.0000 0.0000 04997 09489 0.0505
CNN 04997 09489 00505 05002 00826 09178
SPECK32/64 | o1\ 05000  0.0000 1.0000 05000  0.0000 1.0000
BiLSTM 04999  0.0000 09999 04999 00167 09831
ResNet 05000  1.0000 0.0000 04999  0.0720 09278
CNN 04999 00720 09278 04999 07994 0.2003
SIMONS32/64 | o\ 05000 04999 05000 05000  0.0000 1.0000
BiLSTM 05000 09996 00004 05001 09765 0.0237
OFB and CTR
OFB CTR
Cipher DL Model Accuracy TPR  TNR Accuracy TPR  TNR
ResNet 05000  0.0000 1.0000 05000 0999 0.0004
CNN 05002 09297 00707 05002 08517 0.1487
SPECK32/64 | o\ 05000  0.0000 1.0000 05000  0.0002 09998
BiLSTM 05000 00258 09741 04999 09987 0.0012
ResNet 05000 04999 05000 05002 04947 05057
CNN 04999 09949 00049 04997 09413 0.0581
SIMONS2/64 | o1\ y 05000  0.0000 1.0000 05000  0.0000 1.0000
BiLSTM 05000  0.0000 1.0000 05000  1.0000 0.0000

6.1. Round-Reduced Configuration

In the round-reduced configuration, every combination of cipher, mode, and DL
architecture exhibits behavior consistent with random guessing (Table 3). Accuracies
remain centered around 0.50, while the observed pairs of TPR and TNR are often highly
unbalanced, reflecting model bias rather than meaningful discriminative capability.

For SPECK32 /64, this behavior remains consistent across the CBC, CFB, OFB, and CTR
modes. In particular, under CBC and CFB, the ResNet, LSTM, and BiLSTM models yield
TPR near zero and TNR near one, revealing that the models have collapsed to trivial single
class predictions even though their overall accuracy remains close to 0.50. CNN shows
small deviations in CBC and CFB with TPR values around 0.03 to 0.04 and TNR values
around 0.95 to 0.97, but these deviations are too small to suggest significant structure.
Similar behavior appears in OFB and CTR, where accuracy remains at random guessing
levels, and the imbalance between TPR and TNR only reflects changes in prediction bias
rather than improved distinguishability.

For SIMON32/64, the results closely parallel those of SPECK32/64. In all four modes,
overall accuracy remains at 0.50 for every DL model. ResNet produces roughly balanced
TPR and TNR values near 0.5 across CBC, CFB, OFB, and CTR, consistent with purely
random behavior. CNN shows slightly elevated TPR values around 0.22 to 0.25 in CBC
and CFB, but these are offset by TNR values around 0.75 to 0.78, resulting in an accuracy of
0.50. LSTM and BiLSTM again collapse to deterministic predictions with TPR near zero
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and TNR near one or the reverse, maintaining random guessing accuracy. The OFB and
CTR experiments confirm that changing the mode of operation does not provide additional
distinguishing power in the round-reduced setting.

Overall, these round-reduced experiments show that the DL models cannot exploit
the reduced round structure of SPECK32/64 or SIMON32/64 under any mode of operation.
Any increase in TPR is always offset by a corresponding decrease in TNR, resulting in
accuracy near 0.50.

6.2. Standard Configuration

In the standard (full-round) configuration, the DL models continue to show no mean-
ingful distinguishing advantage (Table 4).

For SPECK32/64, the ResNet model achieves an accuracy of approximately 0.50 across
CBC, CFB, OFB, and CTR, but with TPR near one and TNR near zero, meaning that
the model predicts every ciphertext as belonging to the same class. This complete bias
invalidates the appearance of a high TPR as evidence of distinguishing capability. The CNN
model behaves similarly in CBC and CFB, where its TPR is around 0.95 and its TNR is
around 0.05, again yielding an accuracy of 0.50. The LSTM and BiLSTM models display
the complementary bias, with TPR near zero and TNR near one or the reverse, confirming
that they also resort to trivial classification. The OFB and CTR modes do not alter this
pattern: accuracy remains at random guessing levels accompanied by highly skewed TPR
and TNR pairs.

For SIMON32/64, the standard configuration results match those for SPECK32/64.
ResNet yields TPR near one and TNR near zero across all four modes, with accuracy fixed
at 0.50, indicating a systematic preference for a single ciphertext class. CNN shows slightly
higher TNR values than in the SPECK case, approximately 0.93 in several modes, but its
TPR remains low (around 0.07 to 0.08), keeping the accuracy at 0.50. LSTM and BiLSTM
exhibit skew patterns similar to those observed in SPECK32/64 but again never exceed the
accuracy expected from random guessing. As before, switching from CBC to CFB, OFB,
or CTR produces no meaningful improvement.

Overall, these standard configuration experiments confirm that full-round SPECK32/64
and SIMON32/64 remain indistinguishable from random from the perspective of the DL
architectures evaluated.

6.3. Summary of Indistinguishability Results

Across all the evaluated modes of operation (CBC, CFB, OFB, and CTR), no mea-
surable distinguishing advantage is observed for any DL architectures under either the
round-reduced or standard configurations. While certain models exhibit strong prediction
bias towards a single class in specific configuration, such behavior consistently results in
compensating trade-offs between TPR and TNR, confirming such bias does not constitute
meaningful distinguishability. Importantly, no mode yields simultaneous improvement in
both metrics, which is required for a DL model to be a successful distinguisher.

Overall, these results confirm that the choice of mode of operation does not introduce
exploitable statistical structures detectable by modern DL models under KPA settings.

7. Discussions

Our experimental results consistently show that ML models fail to surpass random
guessing when distinguishing ciphertexts produced by lightweight block ciphers. To better
understand these results, we conducted detailed analysis exploring whether models gen-
uinely learn cryptographic patterns or merely memorize overlapping ciphertext samples.
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Analysis of Memorization vs. Generalization: Why ML models Fail to Identify
Patterns. Lightweight block ciphers such as SPECK32/64 and SIMON32/64 generate 32-bit
ciphertexts, producing approximately 232 (over 4 billion) possible ciphertext outputs for a
given plaintext message under full entropy conditions. Exhaustively analyzing such an
enormous dataset to detect cryptographic leakage or statistical patterns is computationally
prohibitive and practically infeasible due to extensive resources required. Therefore, to con-
duct computationally manageable evaluation, we intentionally restricted randomness of
the initialization vectors (IVs) to 16 bits. Since ciphertext variability directly depends on
IV randomness, this restriction reduced the ciphertext space to approximately 21 (65,536)
unique ciphertexts, creating a controlled yet meaningful experimental scenario to test if ML
models genuinely learn or merely memorize ciphertext patterns.

In our primary experiments with SPECK32/64, we observed that when ML models
were trained on datasets containing extensive oversampling—intentional duplication of
ciphertext samples to explicitly test memorization capabilities of ML models—the models
achieved nearly 99% accuracy. This accuracy reflects memorization of duplicate ciphertext
entries rather than genuine generalization. Conversely, when models were trained with
only a limited number of unique ciphertext pairs without extensive duplication, accuracy
dropped sharply to approximately random guessing (=50%) when evaluated on unseen
ciphertext pairs. However, these models could still correctly classify ciphertext pairs exactly
matching those in the training set, further underscoring the effect of memorization.

To systematically investigate memorization versus genuine generalization in DL mod-
els, we performed a detailed analysis on datasets generated with 16-bit IV randomness. Our
training dataset comprises 800,000 ciphertext samples, with an equal split (400,000 each)
between ciphertexts of P; and P,. Within these samples, P; has 65,395 unique cipher-
texts, while P, has 65,375 unique ciphertexts. The testing dataset contains a total of
100,000 ciphertexts samples, equally distributed between P; and P,. Specifically, cipher-
texts corresponding to P; include 34,974 unique samples, and those corresponding to P,
include 35,049 unique samples, resulting in combined total of 70,023 unique ciphertexts in
the test set.

In our controlled experiment with reduced entropy (16-bits instead of 32-bits), we
selected subsets containing 5000 ciphertext samples per class (10,000 samples in total)
from the training dataset. Within this subset, P; had 4819 unique ciphertexts, and P, had
4815 unique ciphertexts, with 366 redundant samples. Upon examining overlaps between
training subset and the complete testing dataset, we identified 5307 overlapping ciphertext
samples. Specifically, 2659 samples of P; and 2684 samples of P, appeared in both training
and testing datasets, constituting approximately 5% overlap. Such overlaps are crucial,
as they directly enable memorization effects by allowing the model to recognize previously
encountered samples.

Evaluating the DL model trained on these subsets, we obtained an overall accuracy
of about 53.72%. The cross-validation accuracy was around 52.6%, slightly above random
guessing (50%), indicating a minimal memorization effect. To further clarify whether the
model’s performance resulted from genuine generalization or memorization, we conducted
detailed sample-by-sample analysis. Among the 70,023 unique ciphertexts samples in the
testing dataset, the model correctly classified 53.58% of them. However, when isolating
samples unique only to the testing dataset (thus excluding overlapping training samples),
the accuracy sharply dropped to 49.90%, equivalent to random guessing.

This analysis conclusively demonstrates that ML models fail to identify meaningful
cryptographic patterns or statistically exploitable leakage under artificially simplified
cryptographic conditions. The observed marginal improvements in accuracy above random
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chance are entirely due to memorization of overlapping ciphertext samples, rather than
genuine generalization by the ML algorithm.

Overall, the inability of state-of-the-art ML models to surpass random guessing under-
scores not a deficiency of ML techniques but rather highlights the inherent robustness and
strength of cryptographic indistinguishability within lightweight block cipher designs.

8. Related Work

Linear and Differential Cryptanalysis. Albrecht et al. [42] introduced a unified
framework that synergistically incorporates various differential cryptanalysis techniques,
including standard, truncated, and impossible differentials. These methods are particularly
effective in extending the capabilities of known attacks against lightweight block ciphers
such as KATAN-32. Following a similar thematic exploration, Dinur et al. [43] and Blon-
deau et al. [44] refined differential cryptanalysis techniques specifically for a round-reduced
version of SPECK, highlighting potential weaknesses of these ciphers under constrained
operational conditions. In parallel, Ashur et al. [45] examined the SPECK cipher using
linear cryptanalysis, revealing vulnerabilities across various block sizes and demonstrating
that linear approximations could be exploited to undermine the cipher’s integrity. Com-
plementing these analyses, Biryukov et al. [46] developed a branch-and-bound method
that identifies linear and differential trails in ARX-based ciphers. They specifically applied
this approach to enhance cryptanalytic attacks against SPECK. Further studies on the
operational constraints of these ciphers also support these findings [42,47].

ML for Cryptanalysis. Classical cryptanalysis methods, deeply rooted in the math-
ematical underpinnings of cryptographic algorithms and ciphertexts, Sabaawi et al. [16]
extended these traditional techniques by surveying cryptanalysis implementation on ci-
phers like Caesar, transposition, and Hill. Simultaneously, Khoirom et al. [48] proposed an
image encryption scheme based on elliptic curve cryptography and chaotic maps. Their
work identified vulnerabilities in the original scheme, leading to an improved version
resilient to chosen-plaintext attacks, differential attacks, and statistical attacks, thereby
enhancing security and performance in image encryption. This comprehensive exploration
spans classical and contemporary approaches, highlighting the evolving landscape of
cryptographic techniques for heightened security across diverse applications.

Sikdar et al. [20] conducted a survey on recent cryptanalysis techniques, including
brute-force attacks, exploring the growing influence of machine learning in cryptographic
methods and suggesting future research directions. Verma et al. [21] delved into the
historical significance of brute-force attacks in cybersecurity, emphasizing their enduring
relevance for unauthorized data access. Additionally, Mok et al. [22] proposed an intel-
ligent brute-force attack targeting the RSA cryptosystem, simulating and evaluating the
effectiveness of their approach in terms of time required for RSA key recovery. Collectively,
these works contribute to the understanding and evolution of brute-force cryptanalysis,
addressing its challenges and exploring avenues for improved security measures.

While considering side-channel cryptanalysis methods, which focus on the physical
characteristics and behaviors of cryptographic devices or implementations, Zhou et al. [8]
provided a comprehensive survey covering methods, techniques, and countermeasures
in side-channel attacks, evaluating their feasibility and applicability. In a complementary
study, Randolph et al. [9] present an in-depth tutorial on power side-channel analysis,
spanning the past two decades. The study elucidates fundamental concepts and prac-
tical applications of various attacks, such as Simple Power Analysis (SPA), Differential
Power Analysis (DPA), Template Attacks (TA), Correlation Power Analysis (CPA), Mutual
Information Analysis (MIA), and Test Vector Leakage Assessment (TVLA), along with
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the underlying theories. Additionally, the introduction of test statistics as a measure of
confidence in detecting side-channel leakage adds depth to these analyses.

Mehmood et al. [49] conducted a comprehensive evaluation of distinguishability on
the ciphertexts of AES-128 cipher in CBC and ECB modes. Their methodology involved
employing Support Vector Machine, k-Nearest Neighbours, and Random Forest classifiers
trained on the frequency distribution of characters in the ciphertexts. The results under-
scored the susceptibility of the ECB mode, thereby emphasizing the need for robust encryp-
tion techniques. Building upon this foundation, Hu et al. [50] explored further by applying
Random Forest classifiers to diverse block ciphers, reinforcing the vulnerability of the ECB
mode. These studies not only showcase the evolving landscape of machine-learning-based
cryptanalysis but also highlight its role in ensuring the resilience of cryptographic algorithms.

Xiao et al. [18] significantly contributed to the field of neural network (NN)-based
cryptanalysis by introducing a novel approach that not only focuses on the development of
neural distinguishers but also emphasizes metrics for efficacy assessment. Their framework,
applied to Cyber-Physical System (CPS) ciphers, adds depth to the understanding of NN-
based cryptanalysis.

In summary, while the reviewed literature presents a comprehensive understanding
of various cryptanalysis methods, it is noteworthy that the majority of the approaches
explores differential attacks, statistical attacks, chosen-plaintext attacks, etc. In contrast to
prior research, our work addresses a critical gap in the literature and provides a more com-
prehensive evaluation of the cryptographic indistinguishability of lightweight block ciphers.

9. Conclusions

In this research, we introduced a ML-based framework, MIND-Crypt, designed specif-
ically to assess the cryptographic indistinguishability of SPECK32/64 and SIMON32 /64
lightweight block ciphers. Our investigation utilized various state-of-the-art DL architec-
tures to assess these ciphers using ML.

Our results show that DL models fail to surpass random guessing accuracy (~50%)
in distinguishing ciphertexts of two plaintext messages, P; and P», encrypted using same
key. Our analysis for memorization versus generalization evaluations further revealed
that ML models were memorizing ciphertext samples rather than genuinely learning
cryptographic patterns. Even in artificially simplified cryptographic environments with
deliberately reduced entropy, ML algorithms exhibited no ability to generalize beyond
memorized ciphertexts.

These results provide strong empirical evidence that current ML algorithms, despite
their advanced pattern-recognition capabilities, remain ineffective in compromising the
indistinguishability property of even lightweight cryptographic algorithms. Future research
directions could focus on exploring emerging cryptographic algorithms, advanced ML archi-
tectures, or quantum-inspired ML methods to monitor and validate cryptographic resilience.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning

ML Machine Learning

IoT Internet of Things

KPA Known Plaintext Attack

CCA Chosen-Ciphertext Attack

TPE Tree-structured Parzen Estimator

CNN Convolutional Neural Network
LSTM Long-Short Term Memory
BiLSTM  Bidirectional Long-Short Term Memory

CBC Cipher Block Chaining Mode
CFB Cipher Feedback Mode

OFB Output Feedback Mode

CTR Counter Mode

v Initialization Vector

Appendix A. Additional Metrics for the Round-Reduced and
Standard Configurations

In this section, we provide performance analysis of the MIND-Crypt framework using
additional evaluation metrics beyond accuracy, TPR, and TNR. We report Precision, Recall,
F1-Score, ROC-AUC, False Positive Rate (FPR), and False Negative Rate (FNR) for both
round-reduced and standard configurations of SPECK32/64 and SIMON32/64 ciphers
across all evaluated modes of operation (CBC, CFB, OFB, and CTR) and DL architectures
(ResNet, CNN, LSTM, and BiLSTM).

Appendix A.1. Round-Reduced Configuration

Table A1 presents additional performance metrics for the round-reduced configuration.
The ROC-AUC values consistently cluster around 0.5 across all evaluated cipher-mode and
DL architecture combinations, confirming that the models achieve no better than random
classification performance. This metric is particularly significant in cryptographic assess-
ment, as ROC-AUC values approaching 0.5 indicate that the classifier cannot distinguish
between the two ciphertext classes across any decision threshold.

Table A1. Performance metrics for different modes of operation (CBC, CFB, OFB, and CTR) across
ciphers and DL models in round-reduced (5-round) configuration.

Mode Cipher DL Model Accuracy Precision  F1-Score ROC-AUC TPR/Recall TNR FPR FNR
ResNet 0.5000 0.0000 0.0000 0.5008 0.0000 1.0000 0.0000 1.0000

SPECK32/64 CNN 0.5003 0.5043 0.0665 0.5005 0.0355 0.9650 0.0350 0.9644

LSTM 0.5000 0.0000 0.0000 0.5014 0.0000 1.0000 0.0000 1.0000

CBC BiLSTM 0.5000 0.0000 0.0000 0.5000 0.0000 1.0000 0.0000 1.0000
ResNet 0.5002 0.5002 0.4974 0.5003 0.4947 0.5057 0.4943 0.5053

SIMON32/64 CNN 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765

LST™M 0.5000 0.5053 0.0017 0.4996 0.0008 0.9991 0.0017 0.9992

BiLSTM 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000
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Mode Cipher DL Model Accuracy Precision  F1-Score ROC-AUC TPR/Recall TNR FPR FNR
ResNet 0.5003 0.5043 0.0665 0.5005 0.0355 0.9650 0.0350 0.9644

SPECK32,/64 CNN 0.4998 0.4978 0.0798 0.5000 0.0434 0.9562 0.0438 0.9566

LSTM 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000

CFB BiLSTM 0.5000 1.0000 0.0000 0.4996 0.0000 1.0000 0.0000 1.0000
ResNet 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000

SIMON32/64 CNN 0.4998 0.4979 0.0858 0.5008 0.0470 0.9526 0.0474 0.9530

LSTM 0.5000 0.0000 0.0000 0.4997 0.0000 1.0000 0.0000 1.0000

BiLSTM 0.4999 0.4999 0.4726 0.4998 0.4481 0.5518 0.4482 0.5519

ResNet 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001

SPECK32/64 CNN 0.5001 0.5000 0.6158 0.5003 0.8012 0.1990 0.8010 0.1988

LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

OFB BiLSTM 0.4997 0.4982 0.1387 0.4988 0.0806 0.9188 0.0812 0.9194
ResNet 0.5053 0.0009 0.4996 0.0008 0.9991 0.0017 0.9983 0.0009

SIMON32/64 CNN 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

LSTM 0.5000 0.5500 0.0000 0.4987 0.0000 1.0000 0.0000 1.0000

BiLSTM 0.4997 0.4982 0.1387 0.4988 0.0806 0.9188 0.0812 0.9194

ResNet 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765

SPECK32/64 CNN 0.5005 0.5011 0.2921 0.5002 0.2062 0.7948 0.2052 0.7938

LSTM 0.5000 0.4877 0.0004 0.5007 0.0002 0.9998 0.0002 0.9998

CTR BiLSTM 0.5000 0.5000 0.6666 0.5007 0.9997 0.0003 0.9997 0.0003
ResNet 0.4993 0.4985 0.3086 0.4992 0.2235 0.7750 0.2250 0.7765

SIMON32/64 CNN 0.5000 0.5002 0.1091 0.5005 0.0612 0.9388 0.0612 0.9388

LSTM 0.5000 0.0000 0.0000 0.5009 0.0000 1.0000 0.0000 1.0000

BiLSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

The F1-Scores remain significantly low across all configurations, demonstrating that
no model achieves stable, balanced classification performance on both ciphertext classes.
The FPR and FNR values exhibit a consistent trade-off pattern: any reduction in one error
type is systematically offset by a proportional increase in the complementary error type.
This symmetrical error distribution is characteristic of random classification behavior and
reinforces the conclusion that DL models cannot extract statistically exploitable patterns
from round-reduced ciphertexts.

Appendix A.2. Standard Configuration

Table A2 presents additional performance metrics for the standard full-round con-
figuration of SPECK32/64 (22 rounds) and SIMON32/64 (32 rounds). The standard con-
figuration demonstrates behavior consistent with the round-reduced analysis, providing
evidence that the additional rounds in full-specification implementations do not introduce
exploitable patterns detectable by machine learning.

Notably, the standard configuration exhibits the same fundamental characteristics
observed in round-reduced variants: ROC-AUC values remain at approximately 0.5, pre-
diction biases persist across multiple model-mode combinations, and F1-Scores remain
substantially low. These statistics indicate that the diffusion and confusion mechanisms in-
herent in the cipher design operate effectively at both reduced and standard configuration.

The standard configuration shows marginally different bias patterns compared to
round-reduced variants, with some mode and DL architecture combinations exhibiting
opposing prediction tendencies. However, these differences represent variations in ar-
bitrary model behavior rather than improved distinguishing capability, as evidenced by
unchanged accuracies.
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Table A2. Performance metrics for different modes of operation (CBC, CFB, OFB, and CTR) across
ciphers and DL models in standard configuration.

Mode Cipher DL Model Accuracy Precision  F1-Score = ROC-AUC TPR/Recall TNR FPR FNR
ResNet 0.5000 0.5000 0.6667 0.5001 1.0000 0.0000 1.0000 0.0000

sprckaz/es NN 0.4997 0.4999 0.6548 0.4996 0.9489 0.0505 0.9494 0.0511
LST™M 0.5000 0.0000 0.0000 0.5001 0.0000 1.0000 0.0000 1.0000

CBC BiLSTM 0.4999 0.0000 0.0000 0.5003 0.0000 0.9999 0.0000 1.0000
ResNet 0.5000 0.5000 0.6667 0.5000 1.0000 0.0000 1.0000 0.0000

sivonz2/er NN 0.4999 0.4998 0.1260 0.5000 0.0720 0.9278 0.0722 0.9280
LST™M 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001

BiLSTM 0.5000 0.5295 0.0010 0.5003 0.9996 0.0004 0.999% 0.0004

ResNet 0.4997 0.4999 0.6548 0.4996 0.9489 0.0505 0.9494 0.0511

sprckaz/es NN 0.5002 0.5014 0.1419 0.4997 0.0826 0.9178 0.0822 0.9174
LST™M 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

CrB BiLSTM 0.4999 0.4974 0.0323 0.4994 0.0167 0.9831 0.0169 0.9833
ResNet 0.4999 0.4998 0.1260 0.5000 0.0720 0.9278 0.0722 0.9280

sivonz/es  CNN 0.4999 0.4999 0.6152 0.4996 0.7994 0.2003 0.7997 0.2006
LST™M 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

BiLSTM 0.5001 0.5000 0.6614 0.4993 0.9765 0.0237 0.9763 0.0235

ResNet 0.5000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 1.0000

sprckaz/es NN 0.5002 0.5001 0.6504 0.5006 0.9297 0.0707 0.9293 0.0703
LSTM 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000

OFB BiLSTM 0.5000 0.4994 0.0491 0.4992 0.0258 0.9741 0.0259 0.9742
ResNet 0.5000 0.6667 0.0000 0.5004 0.4999 0.5000 0.5000 0.5001

CNN 0.4999 0.4999 0.6152 0.4996 0.9949 0.0049 0.9951 0.0051

SIMONS32/64 1 oryp 0.5000 0.0000 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.0000 0.0000 0.4997 0.0000 1.0000 0.0000 1.0000

ResNet 0.5000 0.5295 0.0010 0.5003 0.9996 0.0004 0.999% 0.0004

sprckaz/es NN 0.5002 0.5001 0.6302 0.5002 0.8517 0.1487 0.8513 0.1483
LSTM 0.5000 0.4877 0.0004 0.5007 0.0002 0.9998 0.0002 0.9998

IR BiLSTM 0.4999 0.5000 0.6664 0.5003 0.9987 0.0012 0.9988 0.0013
ResNet 0.5002 0.5002 0.4974 0.5003 0.4947 0.5057 0.4943 0.5053

CNN 0.4997 0.4998 0.6529 0.5001 0.9413 0.0581 0.9419 0.0587

SIMON32/64  yorpp 0.5000 0.4999 0.0000 0.4999 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.5000 0.6667 0.5008 1.0000 0.0000 1.0000 0.0000

Appendix B. Summary of Extensions over the PST 2025
Conference Version

The journal manuscript contains substantial new contributions compared with confer-

ence version [25], including the following:

1.

Expansion from single-mode (CBC) to comprehensive four-mode evaluation: The
conference version focused solely on the CBC mode for both ciphers. In this journal
version, we extend the framework to cover all four standard modes of operation (CBC,
CFB, OFB, and CTR), for both SPECK32/64 and SIMON32/64, and for multiple DL
architectures in both round-reduced and full-round configurations.

Analysis of mode-dependent bias in ML models: Beyond reporting aggregate accu-
racy, we provide detailed, mode-by-mode analysis of classifier behavior, including
TPR/TNR, FPR/FNR, and ROC-AUC for each cipher mode and mode combination.
We identify and discuss mode-dependent biases, for example, cases where a model
collapses to predicting a single class in certain modes or exhibits asymmetric error
patterns between “ciphertext” and “random” classes.

Enhanced methodological rigor with mode-specific hyperparameter optimization:
The journal manuscript introduces mode-specific and cipher-specific hyperparameter
optimization to ensure that each DL architecture is trained under settings tailored to
the underlying data distribution (e.g., learning rates, batch sizes, epochs, dropout rates,
etc.). This represents a methodological refinement over the conference version, which
used more uniform training configurations. We also provided additional details on
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dataset generation and evaluation metrics, thereby strengthening both reproducibility
and the credibility of our findings.
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