Achieving Connected *k*-coverage in Wireless Sensor Networks using Computational Geometry-based approaches

Venkata Swamy **Kalyan** Nakka

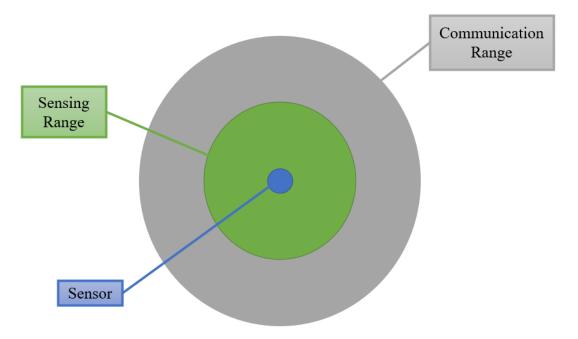
Outline

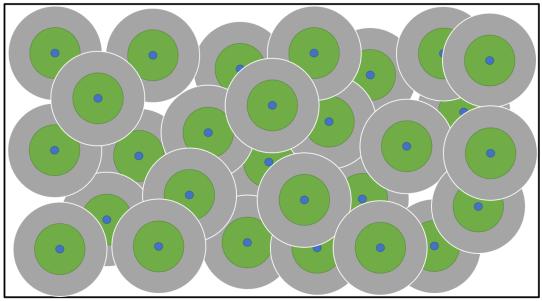
- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

Planar Wireless Sensor Networks

Sensor

Sensors deployed in FoI

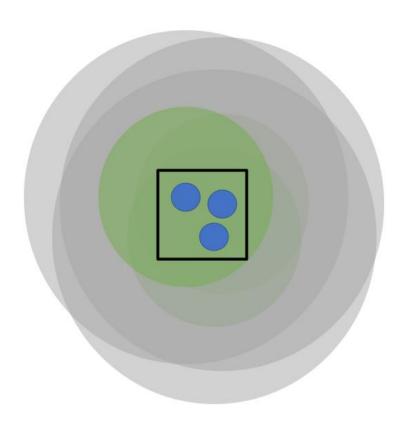




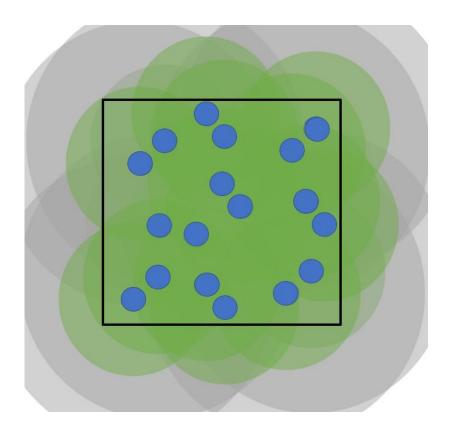
Field of Interest (FoI)

Problem of Connected *k*-coverage in Wireless Sensor Networks

k-coverage



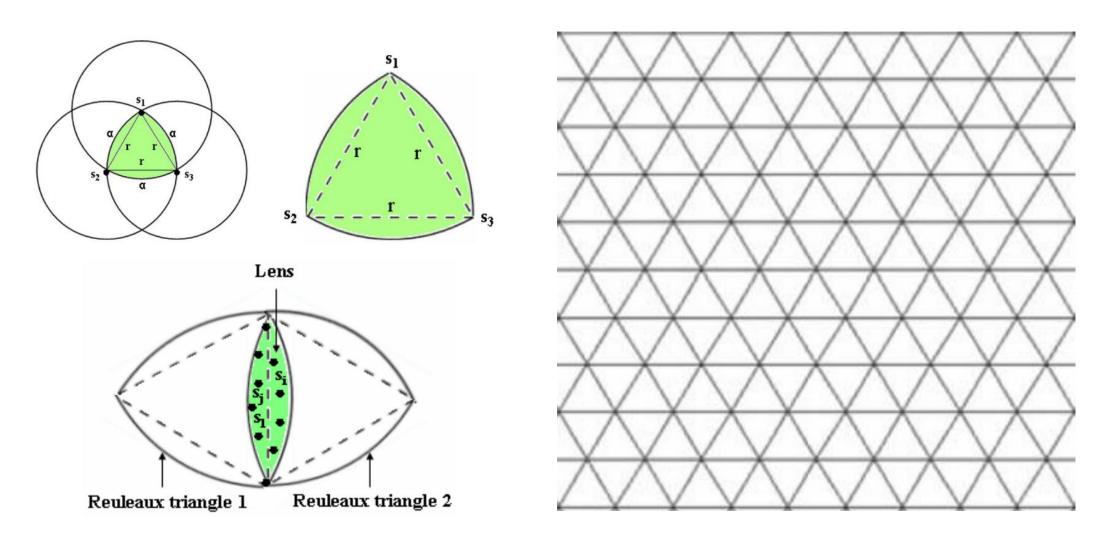
Connected *k*-coverage



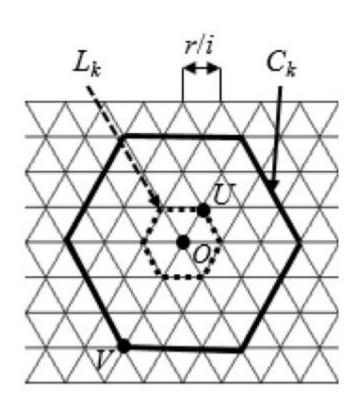
Outline

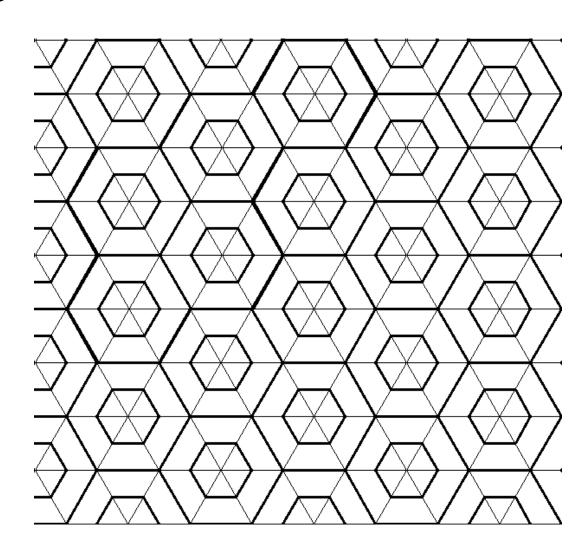
- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

Reuleaux Triangle Tessellation

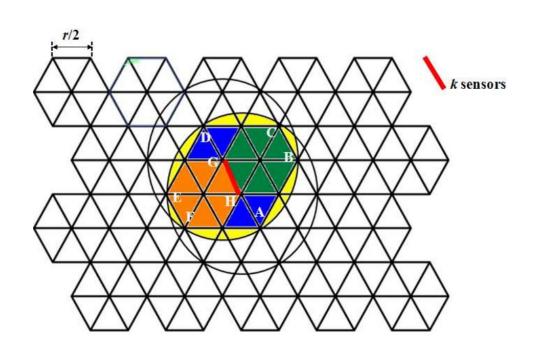


Regular Hexagonal Tessellation





Irregular Hexagonal Tessellation





How to achieve Connected k-coverage?

- 1. Decide a *Tile*.
- 2. Determine the Sensor Placement strategy for that Tile.
- 3. Compute the necessary relation for ensuring network connectivity in the proposed tessellation.

Outline

- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

Sensing Model

- Deterministic Sensing Model
- Every point P in the field may be sensed by a sensor s if and only if the Euclidean distance $\delta(P, s)$ is lower than or same as sensing range.
- The point P sensed by sensor s is denoted by Cov(P, s), where,

$$Cov(P,s) = \begin{cases} 1, & if \ \delta(P,s) \le r_s \\ 0, & otherwise \end{cases}$$

Network Model

- All sensors are randomly and densely dispersed in the FoI.
- All sensors are homogeneous.
- All sensors and sink are aware of their own locations.
- Both sensing and communication ranges of all sensors are modelled to be of disk-shaped.
- All sensors are mobile and can move to specified locations.
- All sensors drain their power supplies for tasks like sending and receiving data, detecting, moving about, and other activities.

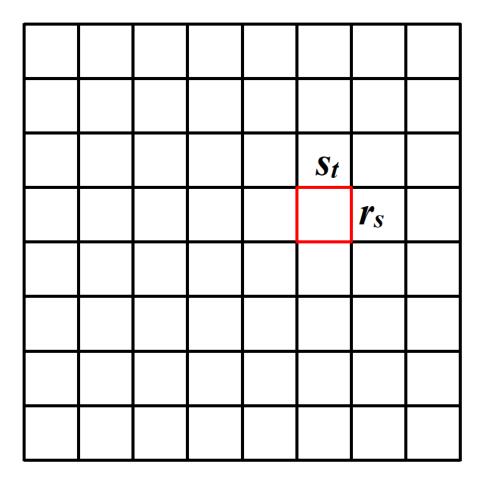
Outline

- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

Connected *k*-coverage Theory

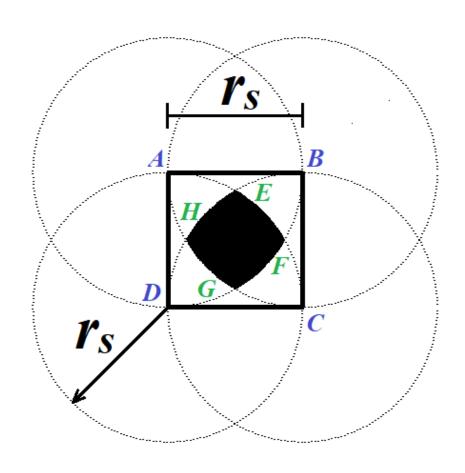
We solve this problem using Square tiles by following below steps,

- 1. Generate a Square Tessellation.
- 2. Construct Cusp Square areas.



$$s_t = r_s$$

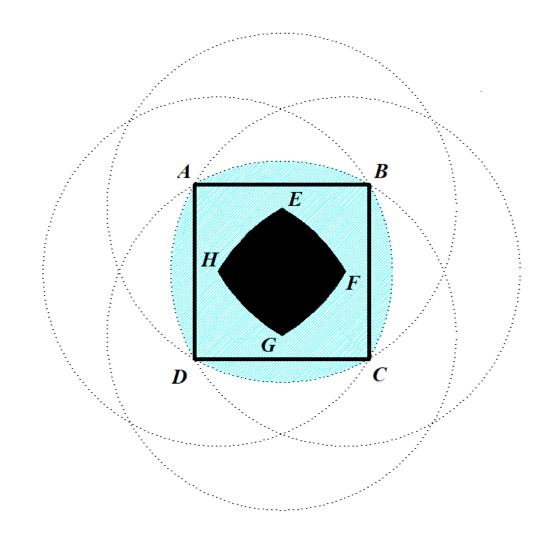
Cusp Square area of Square Tile



k-coverage Area of each Square Tile

k-covered area A_k :

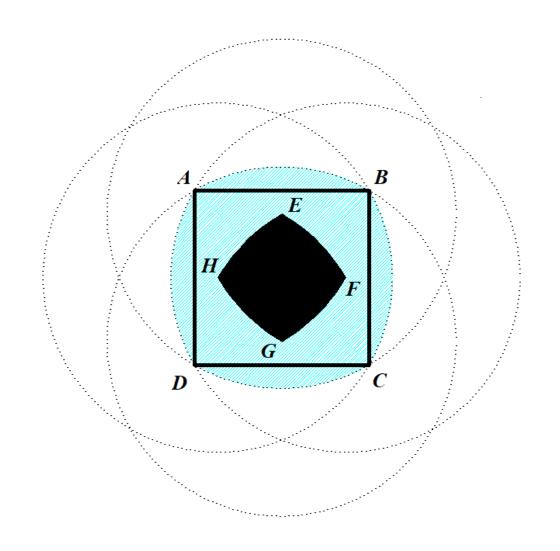
$$A_k = \left(\frac{2\pi + 3 - 3\sqrt{3}}{3}\right)r_s^2$$



Planar Sensor Density

$$\lambda(k, r_s) = \frac{0.734k}{r_s^2}$$

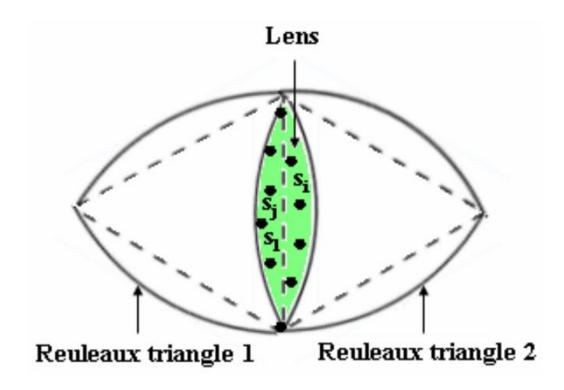
$$k \ge 1$$



Planar Sensor Density

$$\lambda(k, r_s) = \frac{0.814k}{r_s^2}$$

$$k \ge 1$$



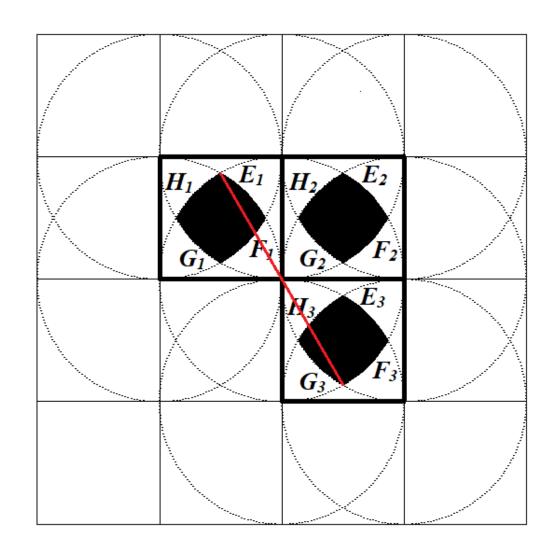
Network connectivity relationship

$$r_c \geq 2r_s$$

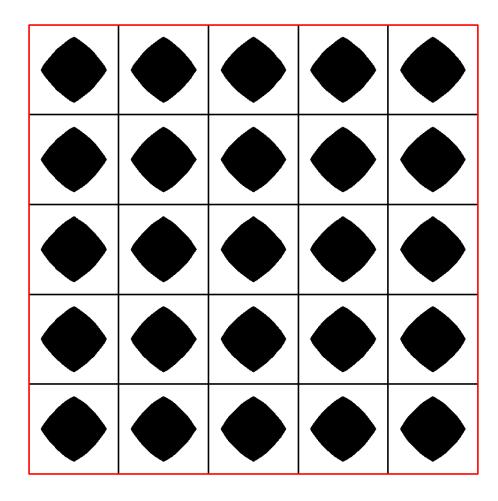
 r_s : Sensing range of the sensors

 r_c : Communication range of the

sensors



<u>k</u>-coverage using <u>Cusp Squares</u> (k-CSqu) Protocol



Outline

- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

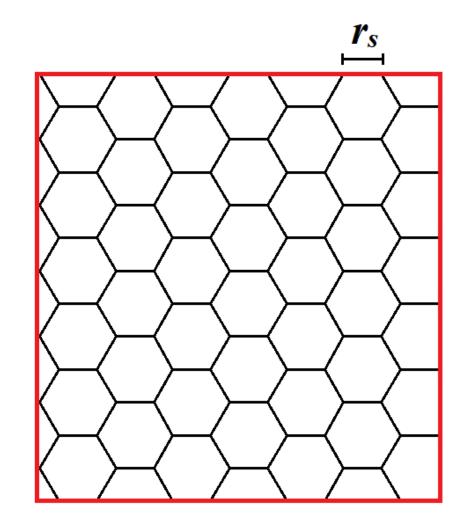
Connected *k*-coverage Theory

Achieve 1-coverage of PWSN

• Place sensors at centers of regular hexagonal tiles.

Planar sensor density for 1-coverage:

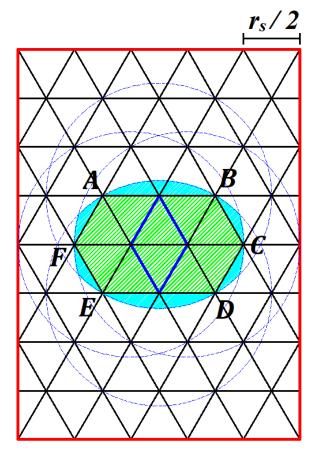
$$\lambda(r_s) = \frac{0.38}{r_s^2}$$

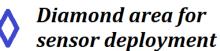


Construction of Irregular Hexagonal Tile

Modify regular hexagon tessellation side length to r_s / 2.

Consider diamond area formed by two equilateral triangles of same base in the tessellation.





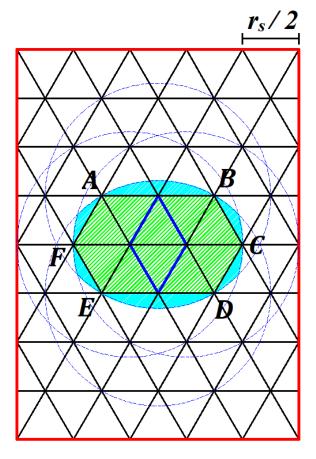
k-coverage area and Planar Sensor Density

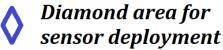
k-coverage area for the configuration is:

$$A_k = \left[\pi + \frac{\sqrt{3}}{8} - \frac{\sqrt{15}}{4} - 4\sin^{-1}\left(\frac{1}{4}\right)\right]r_s^2$$

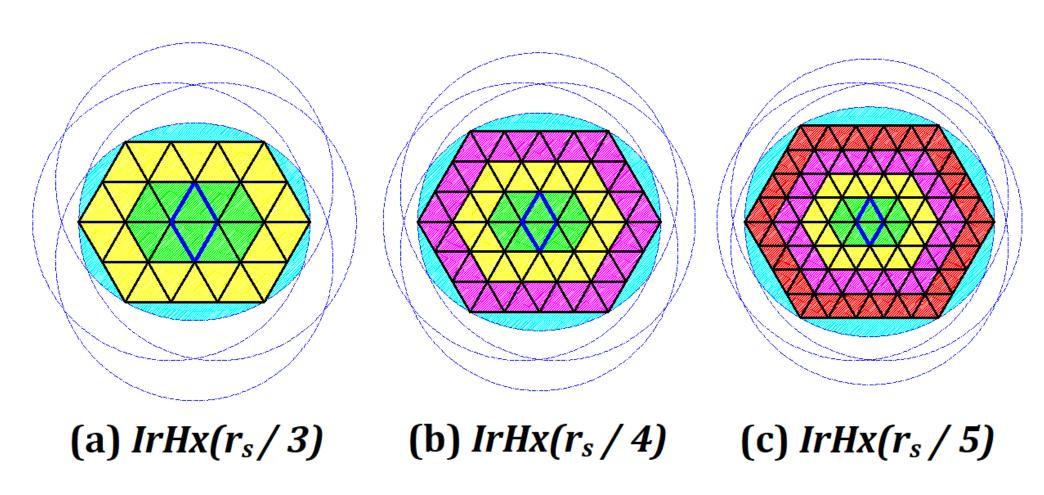
Planar Sensor Density:

$$\lambda(k, r_s) = \frac{0.7251 \, k}{r_s^2}$$





Irregular Hexagonal Tiles for different values of *n*



Generalized Irregular Hexagonal Tile $IrHx(r_s/n)$

\overline{AB}	BC	<u>CD</u>	<u>DE</u>	EF	FA	# Rings
r _s	$\frac{(n-1)r_{s}}{n}$	$\frac{(n-1)r_{s}}{n}$	$r_{\rm s}$	$\frac{(n-1)r_{s}}{n}$	$\frac{(n-1)r_{s}}{n}$	n – 1

Triangles in $IrHx(r_s/n)$

n	\overline{AB}	BC	<u>CD</u>	DE	EF	FA	# Rings
2	r _s	r _s /2	r _s /2	r _s	r _s /2	r _s /2	1
3	r _s	2r _s /3	2r _s /3	r _s	2r _s /3	2r _s /3	2
4	r _s	3r _s /4	3r _s /4	r _s	3r _s /4	$3r_s/4$	3
5	r _s	4r _s /5	$4r_s/5$	r_s	4r _s /5	$4r_s/5$	4

n	Ring #1	Ring #2	Ring #3	Ring #4
2	10			
3	10	22		
4	10	22	34	
5	10	22	34	46

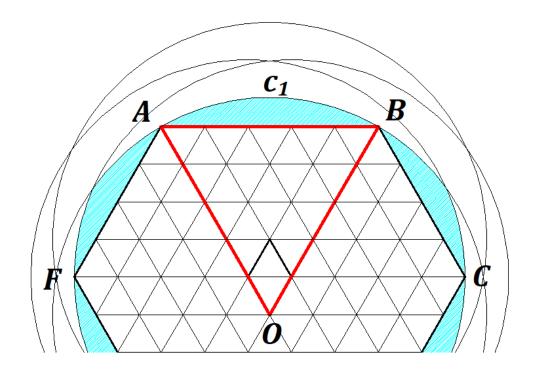
Total number of equilateral triangles N, $IrHx(r_s/n)$ is given by:

$$N = 2(n-1)(3n-1)$$

$$n \ge 1$$

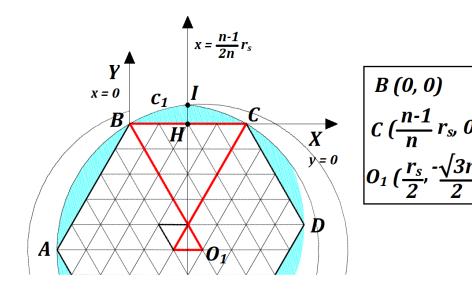
k-coverage Area over the Longer side of $IrHx(r_s/n)$

$$A_{LS} = \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) r_S^2$$



k-coverage Area over the Shorter side of $IrHx(r_s/n)$

$$A_{SS} = \left[\frac{\pi}{6} + \sin^{-1} \left(\frac{-1}{2n} \right) - \frac{\sqrt{4n^2 - 1}}{4n^2} - \frac{\sqrt{3}(n-2)}{4n} \right] r_S$$



k-coverage area of $IrHx(r_s/n)$ Tile

The k-covered area A_k :

$$A_k = \left[\pi + \frac{(3n^2 - 6n + 2)\sqrt{3}}{4n^2} - \frac{\sqrt{4n^2 - 1}}{n^2} - 4\sin^{-1}\left(\frac{1}{2n}\right) \right] r_s^2$$

 r_s : Sensing range of sensor

 $n \ge 1$

Planar Sensor Density of $IrHx(r_s/n)$ Tile

The planar sensor density $\lambda(k, r_s, n)$:

$$\lambda(k, r_s, n) = \frac{k}{\left[\pi + \frac{(3n^2 - 6n + 2)\sqrt{3}}{4n^2} - \frac{\sqrt{4n^2 - 1}}{n^2} - 4\sin^{-1}\left(\frac{1}{2n}\right)\right]r_s^2}$$

 r_s : Sensing range of sensor

 $k \ge 1$ and $n \ge 1$

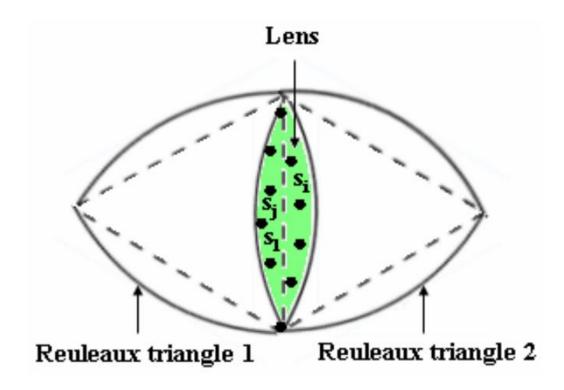
Planar Sensor Density of $IrHx(r_s/n)$ for different values of n

	n	2	3	4	5	10	20	100	ω
λ((k, r_s, n)	$\frac{0.7251 k}{r_{\scriptscriptstyle S}{}^2}$	$\frac{0.4267 k}{r_s^2}$	$\frac{0.3511 k}{r_{\scriptscriptstyle S}^{\ 2}}$	$\frac{0.3168 k}{r_s^2}$	$\frac{0.2639 k}{r_s^2}$	$\frac{0.2431 k}{r_{\scriptscriptstyle S}^{\ 2}}$	$\frac{0.2252 k}{r_s^2}$	$\frac{0.2252 k}{r_s^2}$

Planar Sensor Density

$$\lambda(k, r_s) = \frac{0.814k}{r_s^2}$$

$$k \ge 1$$

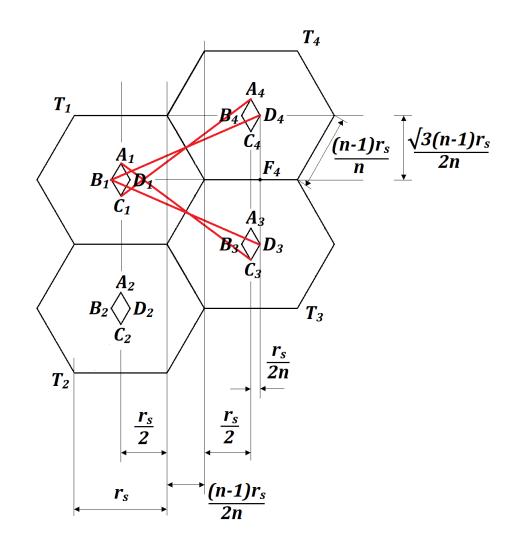


Network connectivity relation

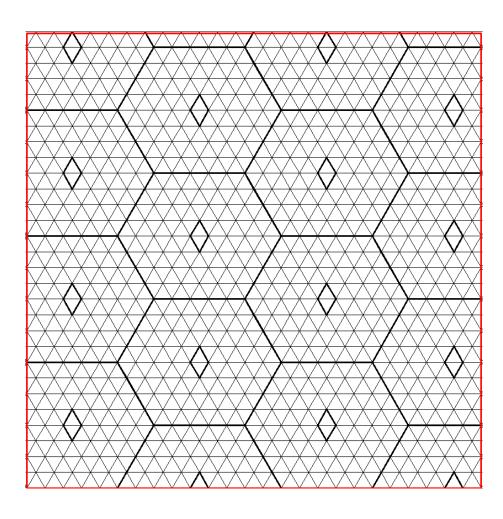
$$r_c \geq \frac{\sqrt{3n^2 + 1}}{n} r_s$$

 r_s : Sensing range of the sensors

 r_c : Communication range of the sensors



<u>k</u>-coverage using <u>Inner Diamonds</u> (*k*-InDi) Protocol

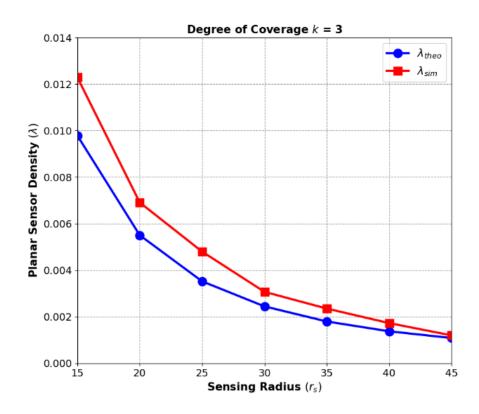


Outline

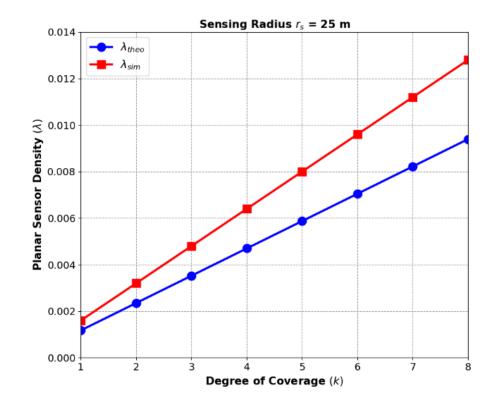
- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

k-CSqu Results

Planar sensor density λ vs. Sensing radius r_s

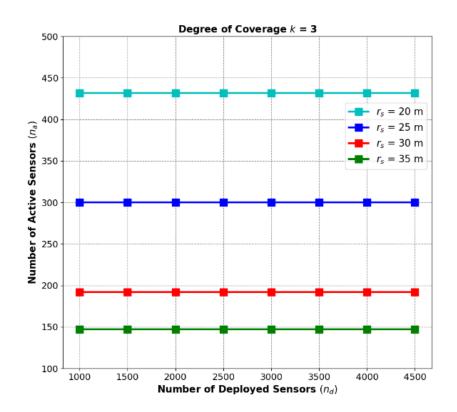


Planar sensor density λ vs. Degree of coverage k

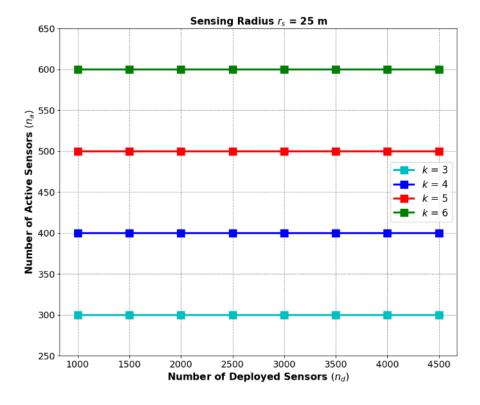


k-CSqu Results

Number of active sensors n_a vs. Number of deployed sensors n_d for different Sensing radius r_s

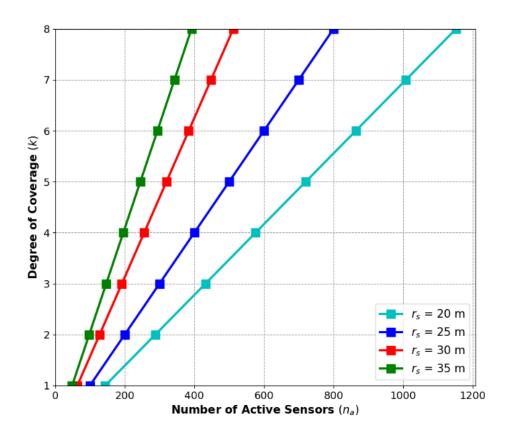


Number of active sensors n_a vs. Number of deployed sensors n_d for different Degree of coverage k



k-CSqu Results

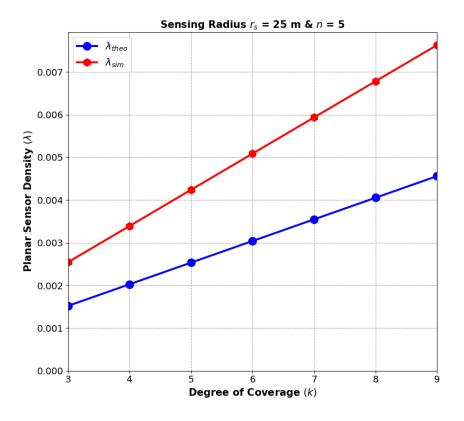
Degree of coverage k versus Number of active sensor n_a



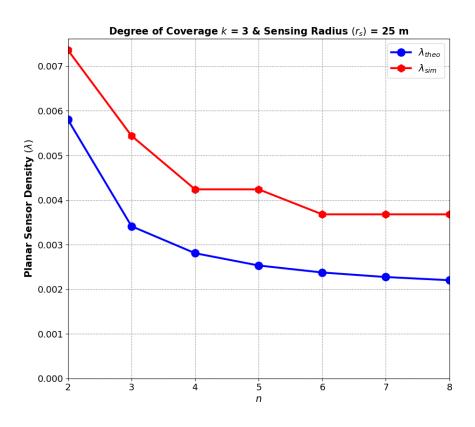
Planar sensor density λ vs. Sensing radius r_s

Degree of Coverage k = 3 & n = 50.007 0.006 O.005 0.004 Planar Sensor I 0.003 0.002 0.001 0.000 15 Sensing Radius (r_s)

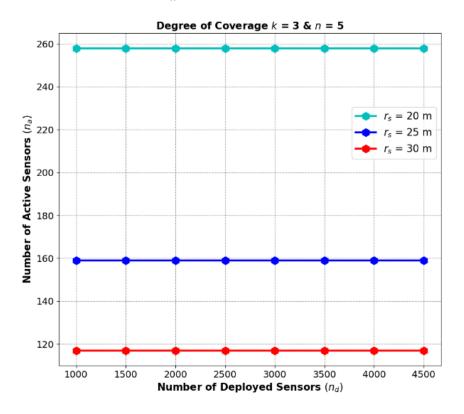
Planar sensor density λ vs. Degree of coverage k



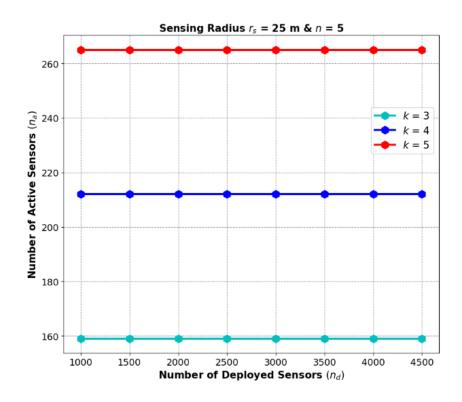
Planar sensor density λ vs. factor n



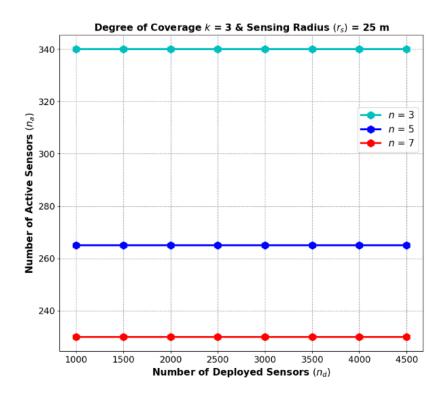
Number of active sensors n_a vs. Number of deployed sensors n_d for different Sensing radius r_s



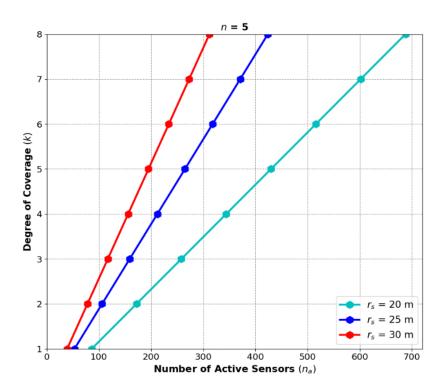
Number of active sensors n_a vs. Number of deployed sensors n_d for different Degree of coverage k



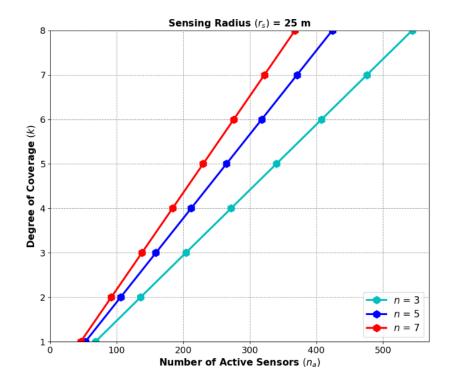
Number of active sensors n_a vs. Number of deployed sensors n_d for different factor n



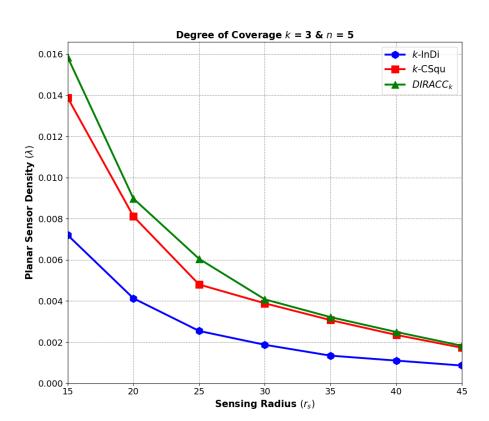
Degree of coverage k versus Number of active sensor n_a for different Sensing radius r_s



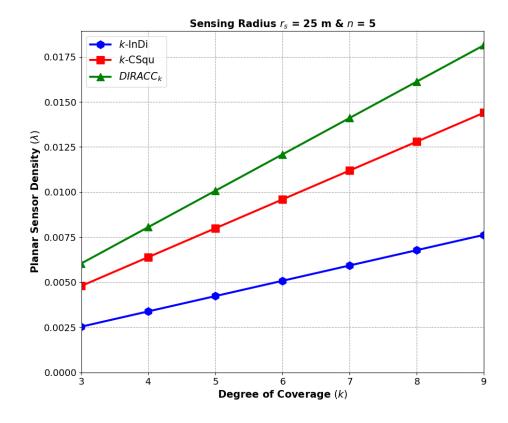
Degree of coverage k versus Number of active sensor n_a for different factor n



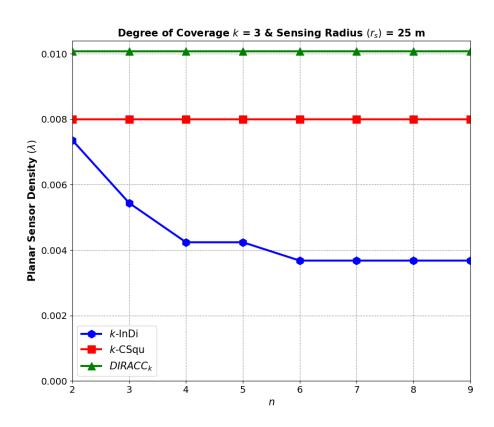
Planar sensor density λ vs. Sensing radius r_s



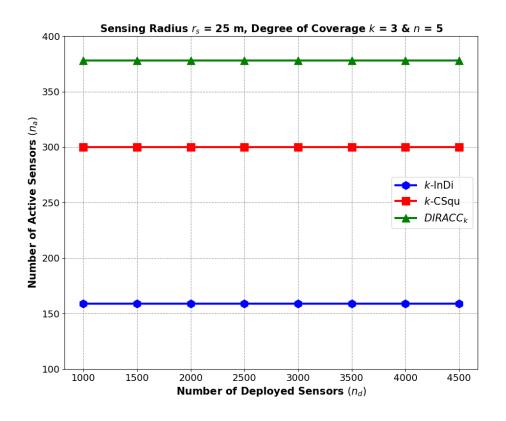
Planar sensor density λ vs. Degree of coverage k



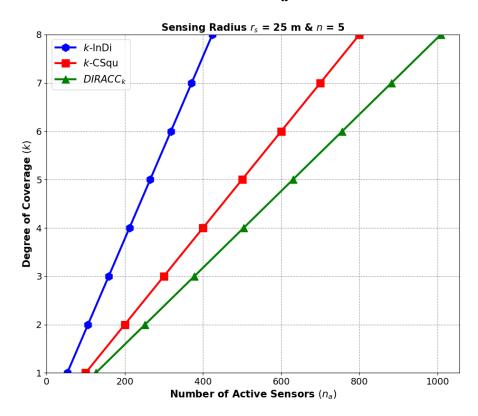
Planar sensor density λ vs. factor n



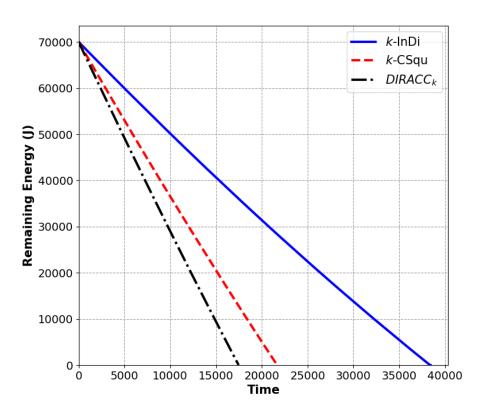
Number of active sensors n_a versus Number of deployed sensors n_d



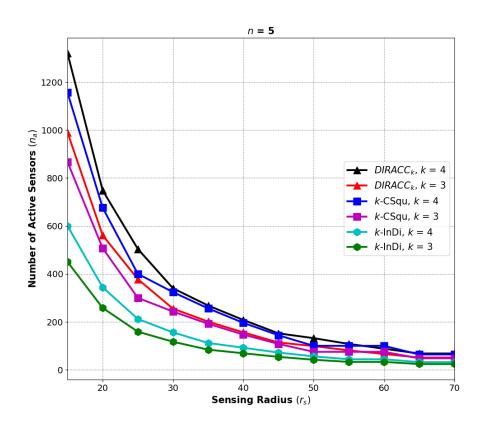
Degree of coverage k versus Number of active sensor n_a



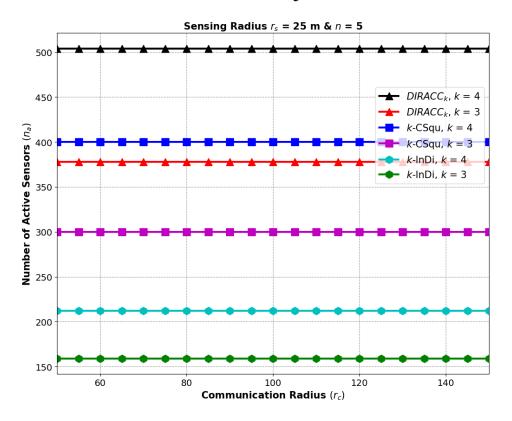
Remaining Energy vs. Time



Number of active sensors n_a vs. Sensing radius r_s



Number of active sensors n_a vs. Communication radius r_c



Outline

- Introduction
- Dr. Ammari's Research
- Preliminaries
- Square Tessellation Approach
- Hexagonal Tessellation Approach
- Results
- Conclusion

Summary of Research

- Investigated connected k-coverage problem of PWSNs.
- Addressed sensor placement issue for both tessellations.
- Calculated planar sensor density for *k*-coverage for both tessellations.
- Established network connectivity relation for both tessellations.
- Proposed centralized *k*-coverage protocols, *k*-CSqu and *k*-InDi.

Future scope of Research

- Find optimal value of *n*.
- Extend our *k*-CSqu and *k*-InDi approaches to heterogeneous sensors.
- Extend our *k*-CSqu and *k*-InDi approaches to stochastic sensing model.
- Extend our both theories to three-dimensional space.

Thank You!!!